{"title":"On widths of one class of periodic functions","authors":"V. G. Doronin, A. Ligun","doi":"10.15421/247704","DOIUrl":null,"url":null,"abstract":"In the paper, we have found the A.N. Kolmogorov's width of the class $W^r L^+_p$ ($r=1,2,\\ldots$, $1 \\leqslant p \\leqslant \\infty$) of all $2\\pi$-periodic functions $f(x)$ whose $(r-1)$-th derivative $f^{(r-1)}(x)$ is absolutely continuous and $\\| f^{(r)}_+ \\|_p \\leqslant 1$.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/247704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In the paper, we have found the A.N. Kolmogorov's width of the class $W^r L^+_p$ ($r=1,2,\ldots$, $1 \leqslant p \leqslant \infty$) of all $2\pi$-periodic functions $f(x)$ whose $(r-1)$-th derivative $f^{(r-1)}(x)$ is absolutely continuous and $\| f^{(r)}_+ \|_p \leqslant 1$.