{"title":"Towards Large-scale Functional Verification of Universal Quantum Circuits","authors":"M. Amy","doi":"10.4204/EPTCS.287.1","DOIUrl":null,"url":null,"abstract":"We introduce a framework for the formal specification and verification of quantum circuits based on the Feynman path integral. Our formalism, built around exponential sums of polynomial functions, provides a structured and natural way of specifying quantum operations, particularly for quantum implementations of classical functions. Verification of circuits over all levels of the Clifford hierarchy with respect to either a specification or reference circuit is enabled by a novel rewrite system for exponential sums with free variables. Our algorithm is further shown to give a polynomial-time decision procedure for checking the equivalence of Clifford group circuits. We evaluate our methods by performing automated verification of optimized Clifford+T circuits with up to 100 qubits and thousands of T gates, as well as the functional verification of quantum algorithms using hundreds of qubits. Our experiments culminate in the automated verification of the Hidden Shift algorithm for a class of Boolean functions in a fraction of the time it has taken recent algorithms to simulate.","PeriodicalId":10720,"journal":{"name":"CoRR","volume":"115 7 1","pages":"1-21"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CoRR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.287.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79
Abstract
We introduce a framework for the formal specification and verification of quantum circuits based on the Feynman path integral. Our formalism, built around exponential sums of polynomial functions, provides a structured and natural way of specifying quantum operations, particularly for quantum implementations of classical functions. Verification of circuits over all levels of the Clifford hierarchy with respect to either a specification or reference circuit is enabled by a novel rewrite system for exponential sums with free variables. Our algorithm is further shown to give a polynomial-time decision procedure for checking the equivalence of Clifford group circuits. We evaluate our methods by performing automated verification of optimized Clifford+T circuits with up to 100 qubits and thousands of T gates, as well as the functional verification of quantum algorithms using hundreds of qubits. Our experiments culminate in the automated verification of the Hidden Shift algorithm for a class of Boolean functions in a fraction of the time it has taken recent algorithms to simulate.