Fibonacci and Lucas Identities Derived via the Golden Ratio

IF 0.5 Q4 EDUCATION & EDUCATIONAL RESEARCH
K. Adegoke
{"title":"Fibonacci and Lucas Identities Derived via the Golden Ratio","authors":"K. Adegoke","doi":"10.47443/ejm.2022.018","DOIUrl":null,"url":null,"abstract":"By expressing Fibonacci and Lucas numbers in terms of the powers of the golden ratio α = (1 + √ 5) / 2 and its inverse β = − 1 /α = (1 − √ 5) / 2 , a multitude of Fibonacci and Lucas identities have been developed in the literature. In this paper, the reverse course is followed: numerous Fibonacci and Lucas identities are derived by making use of the well-known expressions for the powers of α and β in terms of Fibonacci and Lucas numbers.","PeriodicalId":29770,"journal":{"name":"International Electronic Journal of Mathematics Education","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Mathematics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/ejm.2022.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

By expressing Fibonacci and Lucas numbers in terms of the powers of the golden ratio α = (1 + √ 5) / 2 and its inverse β = − 1 /α = (1 − √ 5) / 2 , a multitude of Fibonacci and Lucas identities have been developed in the literature. In this paper, the reverse course is followed: numerous Fibonacci and Lucas identities are derived by making use of the well-known expressions for the powers of α and β in terms of Fibonacci and Lucas numbers.
由黄金比例导出的斐波那契和卢卡斯恒等式
通过用黄金比例α =(1 +√5)/ 2和它的逆β = - 1 /α =(1−√5)/ 2的幂来表示斐波那契数和卢卡斯数,在文献中发展了许多斐波那契和卢卡斯恒等式。在本文中,遵循相反的过程:利用众所周知的关于斐波那契数和卢卡斯数的α和β的幂的表达式,导出了许多斐波那契和卢卡斯恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信