{"title":"Fibonacci and Lucas Identities Derived via the Golden Ratio","authors":"K. Adegoke","doi":"10.47443/ejm.2022.018","DOIUrl":null,"url":null,"abstract":"By expressing Fibonacci and Lucas numbers in terms of the powers of the golden ratio α = (1 + √ 5) / 2 and its inverse β = − 1 /α = (1 − √ 5) / 2 , a multitude of Fibonacci and Lucas identities have been developed in the literature. In this paper, the reverse course is followed: numerous Fibonacci and Lucas identities are derived by making use of the well-known expressions for the powers of α and β in terms of Fibonacci and Lucas numbers.","PeriodicalId":29770,"journal":{"name":"International Electronic Journal of Mathematics Education","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Mathematics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/ejm.2022.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
By expressing Fibonacci and Lucas numbers in terms of the powers of the golden ratio α = (1 + √ 5) / 2 and its inverse β = − 1 /α = (1 − √ 5) / 2 , a multitude of Fibonacci and Lucas identities have been developed in the literature. In this paper, the reverse course is followed: numerous Fibonacci and Lucas identities are derived by making use of the well-known expressions for the powers of α and β in terms of Fibonacci and Lucas numbers.