Bilal Odin, G. Suparta, A. Hermanto, D. S. Palupi, Y. Sardjono, R. A
{"title":"Characteristics of Thermal Neutron Flux Distribution in a Phantom Irradiated by Epithermal Neutron Beam from Double Layer Beam Shaping Assembly (DBSA)","authors":"Bilal Odin, G. Suparta, A. Hermanto, D. S. Palupi, Y. Sardjono, R. A","doi":"10.52763/pjsir.phys.sci.62.3.2019.167.173","DOIUrl":null,"url":null,"abstract":"A simulation study on the Double-layer Beam Shaping Assembly (DBSA) system has been carried out. This study used fast neutron beam resulting from reactions of 30 MeV protons with beryllium target. The MCNPX code was utilized to design the DBSA and the phantom as well as to calculate neutron flux on the phantom. The distribution of epithermal neutron flux and gamma in the DBSA and phantom were computed using the PHITS code. The spectrum of radiation beams generated by the DBSA shows the characteristics that the typical epithermal neutron flux of 1.0 x109 n/(cm2.s), the ratio of epithermal to the thermal and fast neutron flux of 344 and 85, respectively and the ratio of gamma dose to the epithermal neutron flux of 1.82 x 10-13 Gy.cm2. The test of epithermal neutron beams irradiation on the water phantom shows that epithermal neutrons are thermalized and penetrate the phantom up to 12 cm in depth. The maximum value of neutron flux is 1.1 x 109 n/(cm2.s) at a depth of 2 cm in phantom. \n ","PeriodicalId":19924,"journal":{"name":"Pakistan Journal of Scientific & Industrial Research Series A: Physical Sciences","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Scientific & Industrial Research Series A: Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52763/pjsir.phys.sci.62.3.2019.167.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A simulation study on the Double-layer Beam Shaping Assembly (DBSA) system has been carried out. This study used fast neutron beam resulting from reactions of 30 MeV protons with beryllium target. The MCNPX code was utilized to design the DBSA and the phantom as well as to calculate neutron flux on the phantom. The distribution of epithermal neutron flux and gamma in the DBSA and phantom were computed using the PHITS code. The spectrum of radiation beams generated by the DBSA shows the characteristics that the typical epithermal neutron flux of 1.0 x109 n/(cm2.s), the ratio of epithermal to the thermal and fast neutron flux of 344 and 85, respectively and the ratio of gamma dose to the epithermal neutron flux of 1.82 x 10-13 Gy.cm2. The test of epithermal neutron beams irradiation on the water phantom shows that epithermal neutrons are thermalized and penetrate the phantom up to 12 cm in depth. The maximum value of neutron flux is 1.1 x 109 n/(cm2.s) at a depth of 2 cm in phantom.