Prediksi Jumlah Penumpang Pesawat dengan Backpropagation Neural Network

Desy Pitriyani, Yurika Permanasari
{"title":"Prediksi Jumlah Penumpang Pesawat dengan Backpropagation Neural Network","authors":"Desy Pitriyani, Yurika Permanasari","doi":"10.29313/jrm.v2i2.1327","DOIUrl":null,"url":null,"abstract":"Abstract. The surge in passengers at Soekarno-Hatta International Airport in new normal era, urged the airport to have information about how many passengers in the next several time periods in order to know the proper plan and optimization of airport operations. This paper aims to use Backpropagation Neural Network methods to predict the number of airplane passengers. The data used is monthly data on the number of passengers on domestic flights at Soekarno-Hatta International Airport from January 2006 to April 2022 obtained from Badan Pusat Statistik (BPS). The results showed predictions with Backpropagation Neural Network method produced the best predictions with 19.77% MAPE. The prediction of the number of passengers in the next period, May 2022 is 1.060.500 passengers. \nAbstrak. Melonjaknya penumpang di Bandara Internasional Soekarno-Hatta pada era new normal, pihak bandara perlu memiliki informasi mengenai berapa banyak penumpang pada beberapa periode waktu ke depan guna mengetahui perencanaan dan pengoptimalan pengoperasian bandara yang tepat. Penelitian ini bertujuan untuk memprediksi jumlah penumpang pesawat menggunakan Backpropagation Neural Network. Data yang digunakan adalah data bulanan jumlah penumpang pesawat penerbangan domestik di Bandara Internasional Soekarno-Hatta mulai Januari 2006 hingga April 2022 yang diperoleh dari Badan Pusat Statistika (BPS). Hasil penelitian menunjukkan prediksi dengan metode Backpropagation Neural Network menghasilkan prediksi yang baik dengan MAPE 19,77%. Prediksi jumlah penumpang pada periode selanjutnya yaitu Mei 2022 adalah sebanyak 1.060.500 penumpang.","PeriodicalId":31272,"journal":{"name":"Jurnal Riset Pendidikan Matematika","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Riset Pendidikan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29313/jrm.v2i2.1327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. The surge in passengers at Soekarno-Hatta International Airport in new normal era, urged the airport to have information about how many passengers in the next several time periods in order to know the proper plan and optimization of airport operations. This paper aims to use Backpropagation Neural Network methods to predict the number of airplane passengers. The data used is monthly data on the number of passengers on domestic flights at Soekarno-Hatta International Airport from January 2006 to April 2022 obtained from Badan Pusat Statistik (BPS). The results showed predictions with Backpropagation Neural Network method produced the best predictions with 19.77% MAPE. The prediction of the number of passengers in the next period, May 2022 is 1.060.500 passengers. Abstrak. Melonjaknya penumpang di Bandara Internasional Soekarno-Hatta pada era new normal, pihak bandara perlu memiliki informasi mengenai berapa banyak penumpang pada beberapa periode waktu ke depan guna mengetahui perencanaan dan pengoptimalan pengoperasian bandara yang tepat. Penelitian ini bertujuan untuk memprediksi jumlah penumpang pesawat menggunakan Backpropagation Neural Network. Data yang digunakan adalah data bulanan jumlah penumpang pesawat penerbangan domestik di Bandara Internasional Soekarno-Hatta mulai Januari 2006 hingga April 2022 yang diperoleh dari Badan Pusat Statistika (BPS). Hasil penelitian menunjukkan prediksi dengan metode Backpropagation Neural Network menghasilkan prediksi yang baik dengan MAPE 19,77%. Prediksi jumlah penumpang pada periode selanjutnya yaitu Mei 2022 adalah sebanyak 1.060.500 penumpang.
摘要。新常态下苏加诺-哈达国际机场的客流量激增,要求机场掌握未来几个时间段的客流量信息,以便了解正确的计划和优化机场运营。本文旨在利用反向传播神经网络方法预测飞机乘客数量。使用的数据是2006年1月至2022年4月期间苏加诺-哈达国际机场国内航班乘客人数的月度数据,数据来自巴丹普萨特统计(BPS)。结果表明,用反向传播神经网络方法进行预测的预测效果最好,MAPE为19.77%。预计下一时期2022年5月的客流量为1.060.500人次。Abstrak。苏加诺-哈达时代新常态,苏加诺-哈达时代新常态,苏加诺-哈达时代新常态,苏加诺-哈达时代新常态,苏加诺-哈达时代新常态,苏加诺-哈达时代新常态。反向传播神经网络[j]。数据yangdigunakan adalah数据bulanan jumlah penumpang pesawat penerbangan国内数据di Bandara国际苏加诺-哈达muli 2006年1月至2022年4月yangdiperoleh dari Badan Pusat statistics (BPS)。反向传播神经网络孟哈斯坎预测算法杨百登干MAPE 19,77%。Prediksi jumlah penumpang pada period selanjutnya yitu Mei 2022 adalah sebanyak 1.060.500 penumpang。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信