Functorial LCH for immersed Lagrangian cobordisms

Pub Date : 2019-05-21 DOI:10.4310/jsg.2021.v19.n3.a5
Yu Pan, Dan Rutherford
{"title":"Functorial LCH for immersed Lagrangian cobordisms","authors":"Yu Pan, Dan Rutherford","doi":"10.4310/jsg.2021.v19.n3.a5","DOIUrl":null,"url":null,"abstract":"For $1$-dimensional Legendrian submanifolds of $1$-jet spaces, we extend the functorality of the Legendrian contact homology DG-algebra (DGA) from embedded exact Lagrangian cobordisms, as in \\cite{EHK}, to a class of immersed exact Lagrangian cobordisms by considering their Legendrian lifts as conical Legendrian cobordisms. To a conical Legendrian cobordism $\\Sigma$ from $\\Lambda_-$ to $\\Lambda_+$, we associate an immersed DGA map, which is a diagram $$\\alg(\\Lambda_+) \\stackrel{f}{\\rightarrow} \\alg(\\Sigma) \\stackrel{i}{\\hookleftarrow} \\alg(\\Lambda_-), $$ where $f$ is a DGA map and $i$ is an inclusion map. This construction gives a functor between suitably defined categories of Legendrians with immersed Lagrangian cobordisms and DGAs with immersed DGA maps. In an algebraic preliminary, we consider an analog of the mapping cylinder construction in the setting of DG-algebras and establish several of its properties. As an application we give examples of augmentations of Legendrian twist knots that can be induced by an immersed filling with a single double point but cannot be induced by any orientable embedded filling.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2021.v19.n3.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

For $1$-dimensional Legendrian submanifolds of $1$-jet spaces, we extend the functorality of the Legendrian contact homology DG-algebra (DGA) from embedded exact Lagrangian cobordisms, as in \cite{EHK}, to a class of immersed exact Lagrangian cobordisms by considering their Legendrian lifts as conical Legendrian cobordisms. To a conical Legendrian cobordism $\Sigma$ from $\Lambda_-$ to $\Lambda_+$, we associate an immersed DGA map, which is a diagram $$\alg(\Lambda_+) \stackrel{f}{\rightarrow} \alg(\Sigma) \stackrel{i}{\hookleftarrow} \alg(\Lambda_-), $$ where $f$ is a DGA map and $i$ is an inclusion map. This construction gives a functor between suitably defined categories of Legendrians with immersed Lagrangian cobordisms and DGAs with immersed DGA maps. In an algebraic preliminary, we consider an analog of the mapping cylinder construction in the setting of DG-algebras and establish several of its properties. As an application we give examples of augmentations of Legendrian twist knots that can be induced by an immersed filling with a single double point but cannot be induced by any orientable embedded filling.
分享
查看原文
浸入式拉格朗日坐标的泛函LCH
对于$1$ -射流空间的$1$维Legendrian子流形,我们将Legendrian接触同调dg代数(DGA)的泛函性从嵌入精确拉格朗日协数(如\cite{EHK})扩展到一类浸入精确拉格朗日协数,并将它们的Legendrian提升视为圆锥Legendrian协数。对于从$\Lambda_-$到$\Lambda_+$的锥形Legendrian协边$\Sigma$,我们关联一个浸入式DGA图,这是一个图表$$\alg(\Lambda_+) \stackrel{f}{\rightarrow} \alg(\Sigma) \stackrel{i}{\hookleftarrow} \alg(\Lambda_-), $$,其中$f$是DGA图,$i$是包含图。这种构造给出了具有浸入式拉格朗日坐标的Legendrians和具有浸入式DGA映射的DGAs之间的一个适当定义的函子。在代数初论中,我们考虑了dg -代数环境下的映射柱体构造的类比,并建立了它的几个性质。作为一个应用,我们给出了Legendrian捻结的增广例子,它可以由具有单个双点的浸没填充诱导,但不能由任何可定向的嵌入填充诱导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信