(Application of Artificial Neural Networks Model for Forecasting Consumption of Electricity in Gezira State, Sudan (2006-2018: تطبيقات الشبكات العصبية الاصطناعية للتنبؤ باستهلاك الكهرباء في ولاية الجزيرة، السودان (2006-2018)

Nada Mohammed Ahmed Alamin
{"title":"(Application of Artificial Neural Networks Model for Forecasting Consumption of Electricity in Gezira State, Sudan (2006-2018: تطبيقات الشبكات العصبية الاصطناعية للتنبؤ باستهلاك الكهرباء في ولاية الجزيرة، السودان (2006-2018)","authors":"Nada Mohammed Ahmed Alamin","doi":"10.26389/ajsrp.n240719","DOIUrl":null,"url":null,"abstract":"This paper aimed applying models of artificial neural networks to electricity consumption data in the Gezira state, Sudan for the period (Jan 2006- May 2018), and predicting future values for the period (Jun 2018- Dec 2020) by train a recurrent neural network using Quasi-Newton Sampling and using online learning. The study relied on data from the national control center. After applying artificial neural networks, The Thiel coefficient is used to confirm the efficiency of the model, and the paper recommends the use of artificial neural networks to various time series data due to their strength and Accuracy.","PeriodicalId":16473,"journal":{"name":"Journal of natural sciences, life and applied sciences","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of natural sciences, life and applied sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26389/ajsrp.n240719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aimed applying models of artificial neural networks to electricity consumption data in the Gezira state, Sudan for the period (Jan 2006- May 2018), and predicting future values for the period (Jun 2018- Dec 2020) by train a recurrent neural network using Quasi-Newton Sampling and using online learning. The study relied on data from the national control center. After applying artificial neural networks, The Thiel coefficient is used to confirm the efficiency of the model, and the paper recommends the use of artificial neural networks to various time series data due to their strength and Accuracy.
本文旨在将人工神经网络模型应用于苏丹Gezira州2006年1月至2018年5月期间的用电量数据,并通过使用准牛顿采样和在线学习训练递归神经网络来预测该时期(2018年6月至2020年12月)的未来值。这项研究依赖于国家控制中心的数据。应用人工神经网络后,用Thiel系数来验证模型的有效性,由于人工神经网络的强度和准确性,本文推荐将人工神经网络应用于各种时间序列数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信