A 3.4mW/element Radiation-Hardened Ka-Band CMOS Phased-Array Receiver Utilizing Magnetic-Tuning Phase Shifter for Small Satellite Constellation

Xi Fu, Yun Wang, Dongwon You, Xiaolin Wang, A. Fadila, Yi Zhang, Sena Kato, Chun Wang, Zheng Li, Jian Pang, A. Shirane, K. Okada
{"title":"A 3.4mW/element Radiation-Hardened Ka-Band CMOS Phased-Array Receiver Utilizing Magnetic-Tuning Phase Shifter for Small Satellite Constellation","authors":"Xi Fu, Yun Wang, Dongwon You, Xiaolin Wang, A. Fadila, Yi Zhang, Sena Kato, Chun Wang, Zheng Li, Jian Pang, A. Shirane, K. Okada","doi":"10.1109/ISSCC42614.2022.9731557","DOIUrl":null,"url":null,"abstract":"Low-Earth-Orbit (LEO) satellite constellations have been demonstrated as a ground breaking technology for providing low-cost low-latency global internet access. However, each satellite needs more than 200kg launch mass due to bulky wireless components and solar cells, which raises a serious cost issue. One possible solution is further minimizing satellite mass, such as cube satellites, by realizing an ultra-low-power Kaband phased-array transceiver. In this work, 1W power consumption is targeted for a 256-element Ka-band phased-array receiver, i.e. 4mW per element. In the conventional geostationary communication satellites, a parabolic antenna is utilized, and a transceiver module is placed inside a metallic cavity so it can tolerate cosmic radiation. On the other hand, LEO satellites need beam-steering functionality by using a phased-array antenna, and only a thin shield layer can be inserted between antennas and ICs for avoiding redundant mass and insertion loss. Thus, the radiation-hardening and low power consumption are key requirements for such cube satellite phased arrays. For RF building blocks in a phased array, the total ionizing dose (TID) is more critical than the single event effects (SEE). Figure 4.8.1 shows an estimated result for non-radiation-hardened design regarding TID degradation on beam pattern, resulting in 3.8dB main-lobe degradation. In this work, 2.7Mrad TID tolerance is considered adequate for a 3-year lifespan with a 24pm PCB copper shield. Figure 4.8.1 also summarizes the system requirements for a phased-array satellite receiver.","PeriodicalId":6830,"journal":{"name":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"6 1","pages":"90-92"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42614.2022.9731557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Low-Earth-Orbit (LEO) satellite constellations have been demonstrated as a ground breaking technology for providing low-cost low-latency global internet access. However, each satellite needs more than 200kg launch mass due to bulky wireless components and solar cells, which raises a serious cost issue. One possible solution is further minimizing satellite mass, such as cube satellites, by realizing an ultra-low-power Kaband phased-array transceiver. In this work, 1W power consumption is targeted for a 256-element Ka-band phased-array receiver, i.e. 4mW per element. In the conventional geostationary communication satellites, a parabolic antenna is utilized, and a transceiver module is placed inside a metallic cavity so it can tolerate cosmic radiation. On the other hand, LEO satellites need beam-steering functionality by using a phased-array antenna, and only a thin shield layer can be inserted between antennas and ICs for avoiding redundant mass and insertion loss. Thus, the radiation-hardening and low power consumption are key requirements for such cube satellite phased arrays. For RF building blocks in a phased array, the total ionizing dose (TID) is more critical than the single event effects (SEE). Figure 4.8.1 shows an estimated result for non-radiation-hardened design regarding TID degradation on beam pattern, resulting in 3.8dB main-lobe degradation. In this work, 2.7Mrad TID tolerance is considered adequate for a 3-year lifespan with a 24pm PCB copper shield. Figure 4.8.1 also summarizes the system requirements for a phased-array satellite receiver.
基于磁调谐移相器的3.4mW/元抗辐射ka波段CMOS相控阵接收机
低地球轨道(LEO)卫星星座已被证明是提供低成本低延迟全球互联网接入的突破性技术。然而,由于庞大的无线组件和太阳能电池,每颗卫星需要超过200公斤的发射质量,这引发了严重的成本问题。一种可能的解决方案是通过实现超低功耗带相控阵收发器,进一步减少卫星质量,例如立方体卫星。在这项工作中,256单元ka波段相控阵接收器的功耗目标为1W,即每个单元4mW。在传统的地球同步通信卫星中,使用抛物面天线,并将收发模块放置在金属腔内,因此它可以承受宇宙辐射。另一方面,低轨道卫星需要使用相控阵天线来实现波束控制功能,并且在天线和集成电路之间只能插入一层薄薄的屏蔽层,以避免冗余质量和插入损耗。因此,辐射硬化和低功耗是这种立方体卫星相控阵的关键要求。对于相控阵中的射频构件,总电离剂量(TID)比单事件效应(SEE)更为关键。图4.8.1显示了非辐射硬化设计对波束方向图上TID退化的估计结果,导致3.8dB主瓣退化。在这项工作中,2.7Mrad TID公差被认为足以满足24pm PCB铜屏蔽3年的使用寿命。图4.8.1还总结了相控阵卫星接收机的系统要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信