Massively parallel expectation maximization using graphics processing units

M. C. Altinigneli, C. Plant, C. Böhm
{"title":"Massively parallel expectation maximization using graphics processing units","authors":"M. C. Altinigneli, C. Plant, C. Böhm","doi":"10.1145/2487575.2487628","DOIUrl":null,"url":null,"abstract":"Composed of several hundreds of processors, the Graphics Processing Unit (GPU) has become a very interesting platform for computationally demanding tasks on massive data. A special hierarchy of processors and fast memory units allow very powerful and efficient parallelization but also demands novel parallel algorithms. Expectation Maximization (EM) is a widely used technique for maximum likelihood estimation. In this paper, we propose an innovative EM clustering algorithm particularly suited for the GPU platform on NVIDIA's Fermi architecture. The central idea of our algorithm is to allow the parallel threads exchanging their local information in an asynchronous way and thus updating their cluster representatives on demand by a technique called Asynchronous Model Updates (Async-EM). Async-EM enables our algorithm not only to accelerate convergence but also to reduce the overhead induced by memory bandwidth limitations and synchronization requirements. We demonstrate (1) how to reformulate the EM algorithm to be able to exchange information using Async-EM and (2) how to exploit the special memory and processor architecture of a modern GPU in order to share this information among threads in an optimal way. As a perspective Async-EM is not limited to EM but can be applied to a variety of algorithms.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"201 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Composed of several hundreds of processors, the Graphics Processing Unit (GPU) has become a very interesting platform for computationally demanding tasks on massive data. A special hierarchy of processors and fast memory units allow very powerful and efficient parallelization but also demands novel parallel algorithms. Expectation Maximization (EM) is a widely used technique for maximum likelihood estimation. In this paper, we propose an innovative EM clustering algorithm particularly suited for the GPU platform on NVIDIA's Fermi architecture. The central idea of our algorithm is to allow the parallel threads exchanging their local information in an asynchronous way and thus updating their cluster representatives on demand by a technique called Asynchronous Model Updates (Async-EM). Async-EM enables our algorithm not only to accelerate convergence but also to reduce the overhead induced by memory bandwidth limitations and synchronization requirements. We demonstrate (1) how to reformulate the EM algorithm to be able to exchange information using Async-EM and (2) how to exploit the special memory and processor architecture of a modern GPU in order to share this information among threads in an optimal way. As a perspective Async-EM is not limited to EM but can be applied to a variety of algorithms.
使用图形处理单元实现大规模并行期望最大化
图形处理单元(GPU)由数百个处理器组成,已经成为一个非常有趣的平台,用于处理大量数据上的计算要求很高的任务。处理器和快速存储单元的特殊层次结构允许非常强大和有效的并行化,但也需要新颖的并行算法。期望最大化(EM)是一种广泛使用的极大似然估计技术。在本文中,我们提出了一种创新的EM聚类算法,特别适用于NVIDIA的Fermi架构的GPU平台。我们算法的核心思想是允许并行线程以异步方式交换它们的本地信息,从而通过一种称为异步模型更新(Async-EM)的技术按需更新它们的集群代表。Async-EM使我们的算法不仅可以加速收敛,而且还可以减少由内存带宽限制和同步要求引起的开销。我们演示(1)如何重新制定EM算法,以便能够使用Async-EM交换信息;(2)如何利用现代GPU的特殊内存和处理器架构,以便在线程之间以最佳方式共享此信息。作为一个透视图,Async-EM不仅限于EM,而且可以应用于各种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信