Approximate CFAR signal detection in strong low rank non-Gaussian interference

I. Kirsteins, M. Rangaswamy
{"title":"Approximate CFAR signal detection in strong low rank non-Gaussian interference","authors":"I. Kirsteins, M. Rangaswamy","doi":"10.1109/OCEANS.2000.881784","DOIUrl":null,"url":null,"abstract":"We have devised a new generalized likelihood ratio test for detecting a signal in unknown, strong non-Gaussian low rank interference plus white Gaussian noise which needs no knowledge of the non-Gaussian distribution. From perturbation expansions of the test statistic, we establish the connection of the proposed GLRT detector to the UMPI test and show that it is approximately CFAR. Computer simulations indicate that the new detector significantly outperforms traditional adaptive methods in non-Gaussian interference.","PeriodicalId":68534,"journal":{"name":"中国会展","volume":"7 1","pages":"1305-1308 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国会展","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/OCEANS.2000.881784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have devised a new generalized likelihood ratio test for detecting a signal in unknown, strong non-Gaussian low rank interference plus white Gaussian noise which needs no knowledge of the non-Gaussian distribution. From perturbation expansions of the test statistic, we establish the connection of the proposed GLRT detector to the UMPI test and show that it is approximately CFAR. Computer simulations indicate that the new detector significantly outperforms traditional adaptive methods in non-Gaussian interference.
强低秩非高斯干扰下的近似CFAR信号检测
我们设计了一种新的广义似然比检验,用于检测未知的、强非高斯低秩干扰加高斯白噪声中的信号,这种检测不需要知道非高斯分布。从检验统计量的微扰展开中,我们建立了所提出的GLRT检测器与UMPI检验的联系,并证明了它近似为CFAR。计算机仿真结果表明,该检测器在非高斯干扰情况下明显优于传统的自适应检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8254
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信