{"title":"Relation modules of infinite groups, II","authors":"M. J. Evans","doi":"10.2478/s11533-013-0355-0","DOIUrl":null,"url":null,"abstract":"Let Fn denote the free group of rank n and d(G) the minimal number of generators of the finitely generated group G. Suppose that R ↪ Fm ↠ G and S ↪ Fm ↠ G are presentations of G and let $$\\bar R$$ and $$\\bar S$$ denote the associated relation modules of G. It is well known that $$\\bar R \\oplus (\\mathbb{Z}G)^{d(G)} \\cong \\bar S \\oplus (\\mathbb{Z}G)^{d(G)}$$ even though it is quite possible that . However, to the best of the author’s knowledge no examples have appeared in the literature with the property that . Our purpose here is to exhibit, for each integer k ≥ 1, a group G that has presentations as above such that . Our approach depends on the existence of nonfree stably free modules over certain commutative rings and, in particular, on the existence of certain Hurwitz-Radon systems of matrices with integer entries discovered by Geramita and Pullman. This approach was motivated by results of Adams concerning the number of orthonormal (continuous) vector fields on spheres.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"51 1","pages":"436-444"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0355-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let Fn denote the free group of rank n and d(G) the minimal number of generators of the finitely generated group G. Suppose that R ↪ Fm ↠ G and S ↪ Fm ↠ G are presentations of G and let $$\bar R$$ and $$\bar S$$ denote the associated relation modules of G. It is well known that $$\bar R \oplus (\mathbb{Z}G)^{d(G)} \cong \bar S \oplus (\mathbb{Z}G)^{d(G)}$$ even though it is quite possible that . However, to the best of the author’s knowledge no examples have appeared in the literature with the property that . Our purpose here is to exhibit, for each integer k ≥ 1, a group G that has presentations as above such that . Our approach depends on the existence of nonfree stably free modules over certain commutative rings and, in particular, on the existence of certain Hurwitz-Radon systems of matrices with integer entries discovered by Geramita and Pullman. This approach was motivated by results of Adams concerning the number of orthonormal (continuous) vector fields on spheres.