Decoding of human memory formation with EEG signals using convolutional networks

Taeho Kang, Yiyu Chen, S. Fazli, C. Wallraven
{"title":"Decoding of human memory formation with EEG signals using convolutional networks","authors":"Taeho Kang, Yiyu Chen, S. Fazli, C. Wallraven","doi":"10.1109/IWW-BCI.2018.8311487","DOIUrl":null,"url":null,"abstract":"This study examines whether it is possible to predict successful memorization of previously-learned words in a language learning context from brain activity alone. Participants are tasked with memorizing German-Korean word association pairs, and their retention performance is tested on the day of and the day after learning. To investigate whether brain activity recorded via multi-channel EEG is predictive of memory formation, we perform statistical analysis followed by single-trial classification: first by using linear discriminant analysis, and then with convolutional neural networks. Our preliminary results confirm previous neurophysiological findings, that above-chance prediction of vocabulary memory formation is possible in both LDA and deep neural networks.","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"36 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study examines whether it is possible to predict successful memorization of previously-learned words in a language learning context from brain activity alone. Participants are tasked with memorizing German-Korean word association pairs, and their retention performance is tested on the day of and the day after learning. To investigate whether brain activity recorded via multi-channel EEG is predictive of memory formation, we perform statistical analysis followed by single-trial classification: first by using linear discriminant analysis, and then with convolutional neural networks. Our preliminary results confirm previous neurophysiological findings, that above-chance prediction of vocabulary memory formation is possible in both LDA and deep neural networks.
利用卷积神经网络对脑电信号的记忆形成进行解码
这项研究考察了是否有可能仅从大脑活动预测在语言学习环境中成功记忆以前学过的单词。参与者被要求记忆德语-韩语单词联想对,并在学习当天和学习后的第二天测试他们的记忆能力。为了研究通过多通道脑电图记录的大脑活动是否可以预测记忆形成,我们进行了统计分析,然后进行了单次分类:首先使用线性判别分析,然后使用卷积神经网络。我们的初步研究结果证实了之前的神经生理学发现,即在LDA和深度神经网络中,词汇记忆形成的概率预测都是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信