Shallow Network Training With Dynamic Sample Weights Decay - a Potential Function Approximator for Reinforcement Learning

Leo Ghignone, M. Barlow
{"title":"Shallow Network Training With Dynamic Sample Weights Decay - a Potential Function Approximator for Reinforcement Learning","authors":"Leo Ghignone, M. Barlow","doi":"10.1109/SSCI44817.2019.9003124","DOIUrl":null,"url":null,"abstract":"Neural Networks are commonly used as function approximators in Reinforcement Learning, and the Extreme Learning Machine is one of the best algorithms to quickly train a shallow network. The online and sequential version OS-ELM could be a great candidate to quickly train a network to be a function approximator for Reinforcement Learning, but due to its non-forgetting properties it is actually not suitable for direct use with value estimations that improve in accuracy over time. This paper presents an alternative Neural Network training algorithm based on OS-ELM, which is able to perform learning online while dynamically modifying the weights of previously learned samples in order to decrease the importance of old samples learned over time. A mathematical derivation of the formulas used is presented, along with results of experiments showing equivalence of our algorithm to ELM when learning classic datasets and the advantage provided when dealing with Reinforcement Learning data.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"11 1","pages":"149-154"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Neural Networks are commonly used as function approximators in Reinforcement Learning, and the Extreme Learning Machine is one of the best algorithms to quickly train a shallow network. The online and sequential version OS-ELM could be a great candidate to quickly train a network to be a function approximator for Reinforcement Learning, but due to its non-forgetting properties it is actually not suitable for direct use with value estimations that improve in accuracy over time. This paper presents an alternative Neural Network training algorithm based on OS-ELM, which is able to perform learning online while dynamically modifying the weights of previously learned samples in order to decrease the importance of old samples learned over time. A mathematical derivation of the formulas used is presented, along with results of experiments showing equivalence of our algorithm to ELM when learning classic datasets and the advantage provided when dealing with Reinforcement Learning data.
基于动态样本权值衰减的浅网络训练——一种用于强化学习的势函数逼近器
神经网络是强化学习中常用的函数逼近器,而极限学习机是快速训练浅层网络的最佳算法之一。在线和顺序版本的OS-ELM可能是快速训练网络成为强化学习的函数逼近器的一个很好的候选,但由于它的不遗忘特性,它实际上不适合直接用于随着时间的推移而提高精度的值估计。本文提出了一种基于OS-ELM的替代神经网络训练算法,该算法能够在线进行学习,同时动态修改先前学习样本的权重,以降低随着时间推移学习的旧样本的重要性。本文给出了所用公式的数学推导,以及在学习经典数据集时我们的算法与ELM等效的实验结果,以及在处理强化学习数据时提供的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信