Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variables

IF 0.3 Q4 MATHEMATICS
A. R. Danilin, A. A. Shaburov
{"title":"Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variables","authors":"A. R. Danilin, A. A. Shaburov","doi":"10.35634/2226-3594-2020-55-03","DOIUrl":null,"url":null,"abstract":"The paper deals with the problem of optimal control with a Boltz-type quality index over a finite time interval for a linear steady-state control system in the class of piecewise continuous controls with smooth control constraints. In particular, we study the problem of controlling the motion of a system of small mass points under the action of a bounded force. The terminal part of the convex integral quality index additively depends on slow and fast variables, and the integral term is a strictly convex function of control variable. If the system is completely controllable, then the Pontryagin maximum principle is a necessary and sufficient condition for optimality. The main difference between this study and previous works is that the equation contains the zero matrix of fast variables and, thus, the results of A.B. Vasilieva on the asymptotic of the fundamental matrix of a control system are not valid. However, the linear steady-state system satisfies the condition of complete controllability. The article shows that problems of optimal control with a convex integral quality index are more regular than time-optimal problems.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":"31 5 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/2226-3594-2020-55-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

The paper deals with the problem of optimal control with a Boltz-type quality index over a finite time interval for a linear steady-state control system in the class of piecewise continuous controls with smooth control constraints. In particular, we study the problem of controlling the motion of a system of small mass points under the action of a bounded force. The terminal part of the convex integral quality index additively depends on slow and fast variables, and the integral term is a strictly convex function of control variable. If the system is completely controllable, then the Pontryagin maximum principle is a necessary and sufficient condition for optimality. The main difference between this study and previous works is that the equation contains the zero matrix of fast variables and, thus, the results of A.B. Vasilieva on the asymptotic of the fundamental matrix of a control system are not valid. However, the linear steady-state system satisfies the condition of complete controllability. The article shows that problems of optimal control with a convex integral quality index are more regular than time-optimal problems.
具有凸积分质量指标的奇摄动最优控制问题解的渐近展开式,该问题的终端部分加性地依赖于慢变量和快变量
研究一类具有光滑控制约束的分段连续控制的线性稳态控制系统在有限时间区间内具有玻尔兹型质量指标的最优控制问题。特别地,我们研究了在有界力作用下小质量点系统的运动控制问题。凸积分质量指标的末端部分加性地依赖于慢变量和快变量,积分项是控制变量的严格凸函数。如果系统是完全可控的,则庞特里亚金极大值原理是最优性的充分必要条件。本研究与以往工作的主要区别在于,该方程包含快速变量的零矩阵,因此A.B. Vasilieva关于控制系统基本矩阵渐近的结果不成立。而线性稳态系统满足完全可控的条件。本文证明了带凸积分质量指标的最优控制问题比时间最优问题更具有规律性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信