The largest hole in sparse random graphs

Pub Date : 2021-05-28 DOI:10.1002/rsa.21078
Nemanja Draganic, Stefan Glock, M. Krivelevich
{"title":"The largest hole in sparse random graphs","authors":"Nemanja Draganic, Stefan Glock, M. Krivelevich","doi":"10.1002/rsa.21078","DOIUrl":null,"url":null,"abstract":"We show that for any d=d(n) with d0(ϵ)≤d=o(n) , with high probability, the size of a largest induced cycle in the random graph G(n,d/n) is (2±ϵ)ndlogd . This settles a long‐standing open problem in random graph theory.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We show that for any d=d(n) with d0(ϵ)≤d=o(n) , with high probability, the size of a largest induced cycle in the random graph G(n,d/n) is (2±ϵ)ndlogd . This settles a long‐standing open problem in random graph theory.
分享
查看原文
稀疏随机图中最大的洞
我们证明了对于任意d=d(n)且d0(λ)≤d=o(n),随机图G(n,d/n)中最大诱导循环的大小有高概率为(2±λ)ndlogd。这解决了随机图论中一个长期存在的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信