Symptom Severity of Nicotiana benthamiana Plants Inoculated with Agrobacterium Containing Infectious DNA-A Clones of Honeysuckle Yellow Vein Virus (HYVV)

Sung Oh, C. Choi
{"title":"Symptom Severity of Nicotiana benthamiana Plants Inoculated with Agrobacterium Containing Infectious DNA-A Clones of Honeysuckle Yellow Vein Virus (HYVV)","authors":"Sung Oh, C. Choi","doi":"10.21467/IAS.7.1.12-20","DOIUrl":null,"url":null,"abstract":"To investigate the pathogenicity and virulence of the Honeysuckle yellow vein virus (HYVV) lacking betasatellites, PCR amplified unit-lengths of DNA-A genome of HYVV-[DJ] were cloned into binary vector pRI101-AN, and generated HYVV-[DJ]-1mer, -1.3mer and -2mer genomes. Each construct was transformed into Agrobacterium cells and agro-inoculated into young leaves of Nicotiana benthamiana. Except for the HYVV-[DJ]-1mer, HYVV-[DJ]-1.3mer and -2mer clones caused pronounced disease symptoms in N. benthamiana. HYVV-[DJ]-2mer agro-inoculated plants showed more severe plant stunting with downward leaf curling and crinkling than those of HYVV-[DJ]-1.3mer agro-inoculated plants. To discriminate the clone’s virulence quantitatively, SYBR Green-based real-time PCR was performed for the quantification of the target virulence gene DNA in agro-inoculated plants that were collected at weekly intervals for 4 weeks. Regression analysis was obtained from the standard curves by plotting Ct values over the logarithm of the amount of V1 protein gene DNA present in a dilution series of plasmid containing the full-length HYVV-[DJ] genome. Equation of the HYVV V1 DNA standard curve was used to quantify V1 gene DNA concentration in agro-inoculated plants with each clone. The accumulation of V1 gene DNA in HYVV-[DJ]-1.3mer agro-inoculated plants reached the peak level at 4 weeks post inoculation, while the accumulation of V1 gene DNA in HYVV-[DJ]-2mer agro-inoculated plants reached the peak level at 3 weeks post inoculation. The amount of V1 DNA in HYVV-[DJ]-1.3mer agro-inoculated plants was significantly more than that in HYVV-[DJ]-2mer agro-inoculated plants. Considering the results, there was a difference between the accumulation of virus DNA and the symptom severity of the analyzed plants agro-inoculated with each clone. It suggested that the infectious clones’ virulence is not necessarily correlated with the symptom severity.","PeriodicalId":52800,"journal":{"name":"International Journal of Science Annals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Science Annals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21467/IAS.7.1.12-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the pathogenicity and virulence of the Honeysuckle yellow vein virus (HYVV) lacking betasatellites, PCR amplified unit-lengths of DNA-A genome of HYVV-[DJ] were cloned into binary vector pRI101-AN, and generated HYVV-[DJ]-1mer, -1.3mer and -2mer genomes. Each construct was transformed into Agrobacterium cells and agro-inoculated into young leaves of Nicotiana benthamiana. Except for the HYVV-[DJ]-1mer, HYVV-[DJ]-1.3mer and -2mer clones caused pronounced disease symptoms in N. benthamiana. HYVV-[DJ]-2mer agro-inoculated plants showed more severe plant stunting with downward leaf curling and crinkling than those of HYVV-[DJ]-1.3mer agro-inoculated plants. To discriminate the clone’s virulence quantitatively, SYBR Green-based real-time PCR was performed for the quantification of the target virulence gene DNA in agro-inoculated plants that were collected at weekly intervals for 4 weeks. Regression analysis was obtained from the standard curves by plotting Ct values over the logarithm of the amount of V1 protein gene DNA present in a dilution series of plasmid containing the full-length HYVV-[DJ] genome. Equation of the HYVV V1 DNA standard curve was used to quantify V1 gene DNA concentration in agro-inoculated plants with each clone. The accumulation of V1 gene DNA in HYVV-[DJ]-1.3mer agro-inoculated plants reached the peak level at 4 weeks post inoculation, while the accumulation of V1 gene DNA in HYVV-[DJ]-2mer agro-inoculated plants reached the peak level at 3 weeks post inoculation. The amount of V1 DNA in HYVV-[DJ]-1.3mer agro-inoculated plants was significantly more than that in HYVV-[DJ]-2mer agro-inoculated plants. Considering the results, there was a difference between the accumulation of virus DNA and the symptom severity of the analyzed plants agro-inoculated with each clone. It suggested that the infectious clones’ virulence is not necessarily correlated with the symptom severity.
含金银花黄脉病毒(HYVV)感染性DNA-A克隆农杆菌接种本烟植株的症状严重程度
为了研究缺乏betasat卫星的金银花黄脉病毒(HYVV)的致病性和毒力,将PCR扩增的HYVV-[DJ] DNA-A基因组单位长度克隆到二元载体pRI101-AN中,得到HYVV-[DJ]-1mer、-1.3mer和-2mer基因组。将每个构建体转化为农杆菌细胞,并接种到烟叶中。除HYVV-[DJ]-1mer外,HYVV-[DJ]-1.3mer和-2mer克隆在benthamiana中引起明显的疾病症状。与HYVV-[DJ]-1.3mer农业接种植株相比,HYVV-[DJ]-2mer农业接种植株发育迟缓严重,叶片向下卷曲、起皱。为了定量鉴定该克隆的毒力,采用SYBR green实时荧光定量PCR技术对每隔一周采集的农业接种植株的靶毒力基因DNA进行定量。通过绘制含有HYVV-[DJ]全长基因组的稀释质粒系列中V1蛋白基因DNA数量的对数上的Ct值,从标准曲线获得回归分析。利用HYVV V1 DNA标准曲线方程,定量测定各无性系农业接种植株中V1基因DNA浓度。HYVV-[DJ]-1.3mer农业接种植株的V1基因DNA积累量在接种后4周达到峰值,而HYVV-[DJ]-2mer农业接种植株的V1基因DNA积累量在接种后3周达到峰值。HYVV-[DJ]-1.3mer农业接种植株的V1 DNA含量显著高于HYVV-[DJ]-2mer农业接种植株。从结果来看,每个克隆接种的分析植物的病毒DNA积累量和症状严重程度存在差异。提示传染性克隆的毒力与症状的严重程度并不一定相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信