{"title":"Hybrid Pulling/Pushing for I/O-Efficient Distributed and Iterative Graph Computing","authors":"Zhigang Wang, Yu Gu, Y. Bao, Ge Yu, J. Yu","doi":"10.1145/2882903.2882938","DOIUrl":null,"url":null,"abstract":"Billion-node graphs are rapidly growing in size in many applications such as online social networks. Most graph algorithms generate a large number of messages during iterative computations. Vertex-centric distributed systems usually store graph data and message data on disk to improve scalability. Currently, these distributed systems with disk-resident data take a push-based approach to handle messages. This works well if few messages reside on disk. Otherwise, it is I/O-inefficient due to expensive random writes. By contrast, the existing memory-resident pull-based approach individually pulls messages for each vertex on demand. Although it can be used to avoid disk operations regarding messages, expensive I/O costs are incurred by random and frequent access to vertices. This paper proposes a hybrid solution to support switching between push and pull adaptively, to obtain optimal performance for distributed systems with disk-resident data in different scenarios. We first employ a new block-centric technique (b-pull) to improve the I/O-performance of pulling messages, although the iterative computation is vertex-centric. I/O costs of data accesses are shifted from the receiver side where messages are written/read by push to the sender side where graph data are read by b-pull. Graph data are organized by clustering vertices and edges to achieve high I/O-efficiency in b-pull. Second, we design a seamless switching mechanism and a prominent performance prediction method to guarantee efficiency when switching between push and b-pull. We conduct extensive performance studies to confirm the effectiveness of our proposals over existing up-to-date solutions using a broad spectrum of real-world graphs.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2882938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Billion-node graphs are rapidly growing in size in many applications such as online social networks. Most graph algorithms generate a large number of messages during iterative computations. Vertex-centric distributed systems usually store graph data and message data on disk to improve scalability. Currently, these distributed systems with disk-resident data take a push-based approach to handle messages. This works well if few messages reside on disk. Otherwise, it is I/O-inefficient due to expensive random writes. By contrast, the existing memory-resident pull-based approach individually pulls messages for each vertex on demand. Although it can be used to avoid disk operations regarding messages, expensive I/O costs are incurred by random and frequent access to vertices. This paper proposes a hybrid solution to support switching between push and pull adaptively, to obtain optimal performance for distributed systems with disk-resident data in different scenarios. We first employ a new block-centric technique (b-pull) to improve the I/O-performance of pulling messages, although the iterative computation is vertex-centric. I/O costs of data accesses are shifted from the receiver side where messages are written/read by push to the sender side where graph data are read by b-pull. Graph data are organized by clustering vertices and edges to achieve high I/O-efficiency in b-pull. Second, we design a seamless switching mechanism and a prominent performance prediction method to guarantee efficiency when switching between push and b-pull. We conduct extensive performance studies to confirm the effectiveness of our proposals over existing up-to-date solutions using a broad spectrum of real-world graphs.