A Study on Thermal Management Systems for Hybrid–Electric Aircraft

IF 0.1 4区 工程技术 Q4 ENGINEERING, AEROSPACE
Maria Coutinho, F. Afonso, Alain Souza, David Bento, Ricardo Gandolfi, Felipe R. Barbosa, F. Lau, A. Suleman
{"title":"A Study on Thermal Management Systems for Hybrid–Electric Aircraft","authors":"Maria Coutinho, F. Afonso, Alain Souza, David Bento, Ricardo Gandolfi, Felipe R. Barbosa, F. Lau, A. Suleman","doi":"10.3390/aerospace10090745","DOIUrl":null,"url":null,"abstract":"The electrification of an aircraft’s propulsive system is identified as a potential solution towards a lower carbon footprint in the aviation industry. One of the effects of increased electrification is the generation of a large amount of waste heat that needs to be removed. As high-power systems must be cooled to avoid performance deterioration such as battery thermal runaway, a suitable thermal management system is required to regulate the temperature of the powertrain components. With this in mind, the main objective of this research is to identify promising heat transfer technologies to be integrated into a thermal management system (TMS) such that power, mass, and drag can be minimised for a parallel hybrid–electric regional aircraft in the context of the EU-funded FutPrInt50 project. Five different TMS architectures are modelled using the Matlab/Simulink environment based on thermodynamic principles, heat transfer fundamentals, and fluid flow equations. The systems are a combination of a closed-loop liquid cooling integrated with different heat dissipation components, namely ram air heat exchanger, skin heat exchanger, and fuel. Their cooling capacity and overall aircraft performance penalties under different flight conditions are estimated and compared to each other. Then, a parametric study is conducted, followed by a multi-objective optimisation analysis with the aim of minimising the TMS impact. As expected, none of the investigated architectures exhibit an ideal performance across the range of the studied metrics. The research revealed that, while planning the TMS for future hybrid–electric aircraft, alternative architectures will have to be developed and studied in light of the power requirements.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10090745","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The electrification of an aircraft’s propulsive system is identified as a potential solution towards a lower carbon footprint in the aviation industry. One of the effects of increased electrification is the generation of a large amount of waste heat that needs to be removed. As high-power systems must be cooled to avoid performance deterioration such as battery thermal runaway, a suitable thermal management system is required to regulate the temperature of the powertrain components. With this in mind, the main objective of this research is to identify promising heat transfer technologies to be integrated into a thermal management system (TMS) such that power, mass, and drag can be minimised for a parallel hybrid–electric regional aircraft in the context of the EU-funded FutPrInt50 project. Five different TMS architectures are modelled using the Matlab/Simulink environment based on thermodynamic principles, heat transfer fundamentals, and fluid flow equations. The systems are a combination of a closed-loop liquid cooling integrated with different heat dissipation components, namely ram air heat exchanger, skin heat exchanger, and fuel. Their cooling capacity and overall aircraft performance penalties under different flight conditions are estimated and compared to each other. Then, a parametric study is conducted, followed by a multi-objective optimisation analysis with the aim of minimising the TMS impact. As expected, none of the investigated architectures exhibit an ideal performance across the range of the studied metrics. The research revealed that, while planning the TMS for future hybrid–electric aircraft, alternative architectures will have to be developed and studied in light of the power requirements.
混合动力飞机热管理系统研究
飞机推进系统的电气化被认为是航空业降低碳足迹的潜在解决方案。电气化程度提高的影响之一是产生了大量需要去除的废热。由于大功率系统必须进行冷却,以避免电池热失控等性能下降,因此需要合适的热管理系统来调节动力总成组件的温度。考虑到这一点,本研究的主要目标是确定有前途的传热技术,将其集成到热管理系统(TMS)中,以便在欧盟资助的FutPrInt50项目中,将并联式混合动力支线飞机的功率、质量和阻力降至最低。基于热力学原理、传热基础和流体流动方程,使用Matlab/Simulink环境对五种不同的TMS架构进行建模。该系统是一个闭环液体冷却的组合,集成了不同的散热组件,即冲压空气热交换器,表面热交换器和燃料。它们的冷却能力和在不同飞行条件下的整体飞机性能损失进行了估计和比较。然后,进行参数化研究,然后进行多目标优化分析,以最大限度地减少经颅磁刺激的影响。正如预期的那样,在所研究的指标范围内,所研究的体系结构都没有表现出理想的性能。研究表明,在为未来的混合动力飞机规划TMS时,必须根据电力需求开发和研究替代架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerospace America
Aerospace America 工程技术-工程:宇航
自引率
0.00%
发文量
9
审稿时长
4-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信