Image Augmentation based on GAN deep learning approach with Textual Content Descriptors

Judy Simon
{"title":"Image Augmentation based on GAN deep learning approach with Textual Content Descriptors","authors":"Judy Simon","doi":"10.36548/jitdw.2021.3.005","DOIUrl":null,"url":null,"abstract":"Computer vision, also known as computational visual perception, is a branch of artificial intelligence that allows computers to interpret digital pictures and videos in a manner comparable to biological vision. It entails the development of techniques for simulating biological vision. The aim of computer vision is to extract more meaningful information from visual input than that of a biological vision. Computer vision is exploding due to the avalanche of data being produced today. Powerful generative models, such as Generative Adversarial Networks (GANs), are responsible for significant advances in the field of picture creation. The focus of this research is to concentrate on textual content descriptors in the images used by GANs to generate synthetic data from the MNIST dataset to either supplement or replace the original data while training classifiers. This can provide better performance than other traditional image enlarging procedures due to the good handling of synthetic data. It shows that training classifiers on synthetic data are as effective as training them on pure data alone, and it also reveals that, for small training data sets, supplementing the dataset by first training GANs on the data may lead to a significant increase in classifier performance.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jitdw.2021.3.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computer vision, also known as computational visual perception, is a branch of artificial intelligence that allows computers to interpret digital pictures and videos in a manner comparable to biological vision. It entails the development of techniques for simulating biological vision. The aim of computer vision is to extract more meaningful information from visual input than that of a biological vision. Computer vision is exploding due to the avalanche of data being produced today. Powerful generative models, such as Generative Adversarial Networks (GANs), are responsible for significant advances in the field of picture creation. The focus of this research is to concentrate on textual content descriptors in the images used by GANs to generate synthetic data from the MNIST dataset to either supplement or replace the original data while training classifiers. This can provide better performance than other traditional image enlarging procedures due to the good handling of synthetic data. It shows that training classifiers on synthetic data are as effective as training them on pure data alone, and it also reveals that, for small training data sets, supplementing the dataset by first training GANs on the data may lead to a significant increase in classifier performance.
基于文本内容描述符的GAN深度学习图像增强方法
计算机视觉,也被称为计算视觉感知,是人工智能的一个分支,它允许计算机以与生物视觉相当的方式解释数字图像和视频。它需要发展模拟生物视觉的技术。计算机视觉的目的是从视觉输入中提取比生物视觉更有意义的信息。由于今天产生的数据雪崩,计算机视觉正在爆炸式发展。强大的生成模型,如生成对抗网络(gan),在图像创建领域取得了重大进展。本研究的重点是集中在gan使用的图像中的文本内容描述符上,这些图像用于从MNIST数据集生成合成数据,在训练分类器时补充或替换原始数据。由于对合成数据的处理较好,可以提供比其他传统图像放大程序更好的性能。这表明在合成数据上训练分类器与单独在纯数据上训练分类器一样有效,并且还表明,对于较小的训练数据集,通过在数据上先训练gan来补充数据集可能会显著提高分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信