Numerical solution to the time-dependent Gross-Pitaevskii equation

Tsogbayar Tsednee, B. Tsednee, Tsookhuu Khinayat
{"title":"Numerical solution to the time-dependent Gross-Pitaevskii equation","authors":"Tsogbayar Tsednee, B. Tsednee, Tsookhuu Khinayat","doi":"10.5564/jasea.v3i1.2456","DOIUrl":null,"url":null,"abstract":"In this work we employ the split-step technique combined with a Legendre pseudospectral representation to solve various time-dependent GrossPitaevskii equations (GPE). Our findings based on the numerical accuracy of this approach applied for one-dimensional (1D) and two-dimensional (2D) problems show that it can provide accurate and stable solutions. Moreover, this approach has been applied to study the dynamics of the Bose-Einstein condensate which is modeled with the GPE. The breathing of condensate with a repulsive and attractive interactions trapped in 1D and 2D harmonic potentials has been simulated as well.","PeriodicalId":7757,"journal":{"name":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5564/jasea.v3i1.2456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work we employ the split-step technique combined with a Legendre pseudospectral representation to solve various time-dependent GrossPitaevskii equations (GPE). Our findings based on the numerical accuracy of this approach applied for one-dimensional (1D) and two-dimensional (2D) problems show that it can provide accurate and stable solutions. Moreover, this approach has been applied to study the dynamics of the Bose-Einstein condensate which is modeled with the GPE. The breathing of condensate with a repulsive and attractive interactions trapped in 1D and 2D harmonic potentials has been simulated as well.
时变Gross-Pitaevskii方程的数值解
在这项工作中,我们采用分步技术结合勒让德伪谱表示来求解各种随时间变化的GrossPitaevskii方程(GPE)。我们的研究结果基于该方法应用于一维(1D)和二维(2D)问题的数值精度,表明它可以提供准确和稳定的解决方案。此外,该方法还应用于用GPE模拟的玻色-爱因斯坦凝聚体的动力学研究。在一维和二维谐波势中,模拟了具有排斥和吸引相互作用的凝结物的呼吸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信