Data-pooling and multi-task learning for enhanced performance of speech recognition systems in multiple low resourced languages

A. Madhavaraj, A. Ramakrishnan
{"title":"Data-pooling and multi-task learning for enhanced performance of speech recognition systems in multiple low resourced languages","authors":"A. Madhavaraj, A. Ramakrishnan","doi":"10.1109/NCC.2019.8732237","DOIUrl":null,"url":null,"abstract":"We present two approaches to improve the performance of automatic speech recognition (ASR) systems for Gujarati, Tamil and Telugu. In the first approach using data-pooling with phone mapping (DP-PM), a deep neural network (DNN) is trained to predict the senones for the target language; then we use the feature vectors and their alignments from other source languages to map the phones from the source to the target language. The lexicons of the source languages are then modified using this phone mapping and an ASR system for the target language is trained using both the target and the modified source data. This DP-PM approach gives relative improvements in word error rates (WER) of 5.1% for Gujarati, 3.1% for Tamil and 3.4% for Telugu, over the corresponding baseline figures. In the second approach using multi-task DNN (MT-DNN) modeling, we use feature vectors from all the languages and train a DNN with three output layers, each predicting the senones of one of the languages. Objective functions of the output layers are modified such that during training, only those DNN layers responsible for predicting the senones of a language are updated, if the feature vector belongs to that language. This MT-DNN approach achieves relative improvements in WER of 5.7%, 3.3% and 5.2% for Gujarati, Tamil and Telugu, respectively.","PeriodicalId":6870,"journal":{"name":"2019 National Conference on Communications (NCC)","volume":"118 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2019.8732237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present two approaches to improve the performance of automatic speech recognition (ASR) systems for Gujarati, Tamil and Telugu. In the first approach using data-pooling with phone mapping (DP-PM), a deep neural network (DNN) is trained to predict the senones for the target language; then we use the feature vectors and their alignments from other source languages to map the phones from the source to the target language. The lexicons of the source languages are then modified using this phone mapping and an ASR system for the target language is trained using both the target and the modified source data. This DP-PM approach gives relative improvements in word error rates (WER) of 5.1% for Gujarati, 3.1% for Tamil and 3.4% for Telugu, over the corresponding baseline figures. In the second approach using multi-task DNN (MT-DNN) modeling, we use feature vectors from all the languages and train a DNN with three output layers, each predicting the senones of one of the languages. Objective functions of the output layers are modified such that during training, only those DNN layers responsible for predicting the senones of a language are updated, if the feature vector belongs to that language. This MT-DNN approach achieves relative improvements in WER of 5.7%, 3.3% and 5.2% for Gujarati, Tamil and Telugu, respectively.
基于数据池和多任务学习的低资源语言语音识别系统性能提升
我们提出了两种方法来提高古吉拉特语、泰米尔语和泰卢固语的自动语音识别系统的性能。在第一种方法中,使用带有电话映射的数据池(DP-PM),训练深度神经网络(DNN)来预测目标语言的senones;然后,我们使用来自其他源语言的特征向量及其对齐来将手机从源语言映射到目标语言。然后使用该电话映射修改源语言的词汇,并使用目标和修改后的源数据训练目标语言的ASR系统。与相应的基线数据相比,这种DP-PM方法使古吉拉特语的单词错误率(WER)相对提高了5.1%,泰米尔语为3.1%,泰卢固语为3.4%。在第二种使用多任务深度神经网络(MT-DNN)建模的方法中,我们使用来自所有语言的特征向量并训练具有三个输出层的深度神经网络,每个输出层预测一种语言的senones。修改输出层的目标函数,以便在训练期间,如果特征向量属于该语言,则仅更新负责预测语言senones的DNN层。这种MT-DNN方法在古吉拉特语、泰米尔语和泰卢固语中分别实现了5.7%、3.3%和5.2%的相对改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信