Yigezu Mekonnen Bayisa, Tafere Aga Bullo, Mohammed Seid Bultum
{"title":"OPTIMIZATION AND CHARACTERIZATION OF CALCINATED CHICKEN EGG SHELL DOPED TITANIUM DIOXIDE PHOTOCATALYST BASED NANOPARTICLES FOR WASTEWATER TREATMENT","authors":"Yigezu Mekonnen Bayisa, Tafere Aga Bullo, Mohammed Seid Bultum","doi":"10.26480/wcm.02.2021.79.83","DOIUrl":null,"url":null,"abstract":"In recent decades, research concerning and knowledge about the external benefits of renewable raw materials have intensified the efforts for investigating the major sources, causes, and effects of wastewater from solid waste and industries or households. In this study bio-matter and low-cost photocatalyst was prepared for photodegradation on the removal of methylene blue from wastewater treatment, and characterized by Fourier-transform infrared (FTIR) spectroscopy, UV-spectrometer, and X-ray diffractometer (XRD). The effects of initial concentration of methylene blue, amount of dopant, and degradation time were investigated on the percentage degradation of methylene blue using the calcinated eggshell doped titanium dioxide nanoparticle catalysts. At sufficient contact time and low initial concentration, the increment in dopant dose from 0.5 to 2.5 g/l results in an increment of methylene blue degradation efficiency, from 52.5 % to 95.8%. It was shown that a calcinating eggshell doped titanium dioxide photocatalyst method for wastewater treatment is a promising option for the degradation of methylene blue from industrial wastewater under the stated condition.","PeriodicalId":36321,"journal":{"name":"Water Conservation and Management","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Conservation and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/wcm.02.2021.79.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, research concerning and knowledge about the external benefits of renewable raw materials have intensified the efforts for investigating the major sources, causes, and effects of wastewater from solid waste and industries or households. In this study bio-matter and low-cost photocatalyst was prepared for photodegradation on the removal of methylene blue from wastewater treatment, and characterized by Fourier-transform infrared (FTIR) spectroscopy, UV-spectrometer, and X-ray diffractometer (XRD). The effects of initial concentration of methylene blue, amount of dopant, and degradation time were investigated on the percentage degradation of methylene blue using the calcinated eggshell doped titanium dioxide nanoparticle catalysts. At sufficient contact time and low initial concentration, the increment in dopant dose from 0.5 to 2.5 g/l results in an increment of methylene blue degradation efficiency, from 52.5 % to 95.8%. It was shown that a calcinating eggshell doped titanium dioxide photocatalyst method for wastewater treatment is a promising option for the degradation of methylene blue from industrial wastewater under the stated condition.