Three dimensional structure recognition in digital angiograms using Gauss-Markov methods

R. Petrocelli, K. Manbeck, J. Elion
{"title":"Three dimensional structure recognition in digital angiograms using Gauss-Markov methods","authors":"R. Petrocelli, K. Manbeck, J. Elion","doi":"10.1109/CIC.1993.378494","DOIUrl":null,"url":null,"abstract":"Existing methods for automatically finding arteries in coronary angiograms rely on preprocessing (digital subtraction or edge enhancement). Structure recognition in unprocessed images will enable the analysis of a wider range clinical images (of varying quality). The authors have previously reported on a prototype which works on such unsubtracted and unprocessed digital angiograms. They now present a system designed to process image pairs and thereby perform recognition in three dimensions. This approach, the \"Deformable Template Matcher\" (DTM), combines a-priori knowledge of the arterial tree (encoded as mathematical \"templates\") with a stochastic deformation process described by a hidden Markov model. An introduction so the technique is presented along with examples of its application to bi-plane images and a discussion of the computational implications.<<ETX>>","PeriodicalId":20445,"journal":{"name":"Proceedings of Computers in Cardiology Conference","volume":"53 1","pages":"101-104"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Computers in Cardiology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.1993.378494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Existing methods for automatically finding arteries in coronary angiograms rely on preprocessing (digital subtraction or edge enhancement). Structure recognition in unprocessed images will enable the analysis of a wider range clinical images (of varying quality). The authors have previously reported on a prototype which works on such unsubtracted and unprocessed digital angiograms. They now present a system designed to process image pairs and thereby perform recognition in three dimensions. This approach, the "Deformable Template Matcher" (DTM), combines a-priori knowledge of the arterial tree (encoded as mathematical "templates") with a stochastic deformation process described by a hidden Markov model. An introduction so the technique is presented along with examples of its application to bi-plane images and a discussion of the computational implications.<>
基于高斯-马尔可夫方法的数字血管造影三维结构识别
目前在冠状动脉造影中自动发现动脉的方法依赖于预处理(数字减法或边缘增强)。未处理图像中的结构识别将使分析更大范围的临床图像(不同质量)成为可能。作者以前曾报道过一个原型,该原型可用于这种未减法和未处理的数字血管造影。他们现在提出了一个系统,旨在处理图像对,从而进行三维识别。这种方法,即“可变形模板匹配器”(DTM),将动脉树的先验知识(编码为数学“模板”)与由隐马尔可夫模型描述的随机变形过程相结合。介绍了该技术,并给出了其在双平面图像中的应用示例和计算意义的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信