Ionic concentration sensing via nitrogen modified graphene through low-damage plasma treatment

M. Tsai, Chuan Hsuan Lin, Chi-Hsien Huang, Wen Yen Woon, Chih-Ting Lin
{"title":"Ionic concentration sensing via nitrogen modified graphene through low-damage plasma treatment","authors":"M. Tsai, Chuan Hsuan Lin, Chi-Hsien Huang, Wen Yen Woon, Chih-Ting Lin","doi":"10.1109/SENSORS43011.2019.8956821","DOIUrl":null,"url":null,"abstract":"In this work, we modified the single layer graphene by nitrogen modification through the low-damage plasma treatment (LD-plasma). The electronic transport characteristics for different modified parameters under aqueous environment were performed by Agilent semiconductor analysis B1500A. We choose potassium chloride (KCl) as our electrolyte. Based on the experimental results, the Dirac point is shifted linearly with the concentration of KCl. At the same time, the experimental results also show that the behaviors of 1-min and 3-min modifications are quite different between each other because of modification to graphene structure. As a consequence, this work shows an opportunity of being an ionic sensor with the developed nitrogen-doped graphene.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":"66 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we modified the single layer graphene by nitrogen modification through the low-damage plasma treatment (LD-plasma). The electronic transport characteristics for different modified parameters under aqueous environment were performed by Agilent semiconductor analysis B1500A. We choose potassium chloride (KCl) as our electrolyte. Based on the experimental results, the Dirac point is shifted linearly with the concentration of KCl. At the same time, the experimental results also show that the behaviors of 1-min and 3-min modifications are quite different between each other because of modification to graphene structure. As a consequence, this work shows an opportunity of being an ionic sensor with the developed nitrogen-doped graphene.
通过低损伤等离子体处理的氮修饰石墨烯离子浓度传感
本文通过低损伤等离子体处理(LD-plasma)对单层石墨烯进行氮改性。采用安捷伦半导体分析仪B1500A对不同修饰参数在水环境下的电子输运特性进行研究。我们选择氯化钾(KCl)作为电解质。实验结果表明,狄拉克点随KCl浓度的变化呈线性位移。同时,实验结果还表明,由于对石墨烯结构的修饰,1分钟和3分钟改性的行为有很大的不同。因此,这项工作显示了利用已开发的氮掺杂石墨烯作为离子传感器的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信