Methodological Gaps in Predicting Mental Health States from Social Media: Triangulating Diagnostic Signals

S. Ernala, M. Birnbaum, Kristin A. Candan, Asra F. Rizvi, W. A. Sterling, J. Kane, M. Choudhury
{"title":"Methodological Gaps in Predicting Mental Health States from Social Media: Triangulating Diagnostic Signals","authors":"S. Ernala, M. Birnbaum, Kristin A. Candan, Asra F. Rizvi, W. A. Sterling, J. Kane, M. Choudhury","doi":"10.1145/3290605.3300364","DOIUrl":null,"url":null,"abstract":"A growing body of research is combining social media data with machine learning to predict mental health states of individuals. An implication of this research lies in informing evidence-based diagnosis and treatment. However, obtaining clinically valid diagnostic information from sensitive patient populations is challenging. Consequently, researchers have operationalized characteristic online behaviors as \"proxy diagnostic signals\" for building these models. This paper posits a challenge in using these diagnostic signals, purported to support clinical decision-making. Focusing on three commonly used proxy diagnostic signals derived from social media, we find that predictive models built on these data, although offer strong internal validity, suffer from poor external validity when tested on mental health patients. A deeper dive reveals issues of population and sampling bias, as well as of uncertainty in construct validity inherent in these proxies. We discuss the methodological and clinical implications of these gaps and provide remedial guidelines for future research.","PeriodicalId":20454,"journal":{"name":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290605.3300364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

A growing body of research is combining social media data with machine learning to predict mental health states of individuals. An implication of this research lies in informing evidence-based diagnosis and treatment. However, obtaining clinically valid diagnostic information from sensitive patient populations is challenging. Consequently, researchers have operationalized characteristic online behaviors as "proxy diagnostic signals" for building these models. This paper posits a challenge in using these diagnostic signals, purported to support clinical decision-making. Focusing on three commonly used proxy diagnostic signals derived from social media, we find that predictive models built on these data, although offer strong internal validity, suffer from poor external validity when tested on mental health patients. A deeper dive reveals issues of population and sampling bias, as well as of uncertainty in construct validity inherent in these proxies. We discuss the methodological and clinical implications of these gaps and provide remedial guidelines for future research.
从社交媒体预测心理健康状态的方法差距:三角测量诊断信号
越来越多的研究将社交媒体数据与机器学习相结合,以预测个人的心理健康状态。本研究的一个意义在于为循证诊断和治疗提供信息。然而,从敏感的患者群体中获得临床有效的诊断信息是具有挑战性的。因此,研究人员将特征在线行为作为构建这些模型的“代理诊断信号”进行操作。本文提出了使用这些诊断信号的挑战,旨在支持临床决策。聚焦于三种常用的来自社交媒体的代理诊断信号,我们发现建立在这些数据上的预测模型,虽然提供了很强的内部效度,但在对精神健康患者进行测试时,外部效度很差。更深入的研究揭示了人口和抽样偏差的问题,以及这些代理中固有的构造有效性的不确定性。我们讨论这些差距的方法学和临床意义,并为未来的研究提供补救指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信