{"title":"Detection of Fake Job Advertisements using Machine Learning algorithms","authors":"E. Baraneetharan","doi":"10.36548/jaicn.2022.3.006","DOIUrl":null,"url":null,"abstract":"Most companies nowadays use digital platforms to host conferences, job interviews, and other business events. The unexpected increase in the need for internet platforms has resulted in a rapid rise of fraud advertising. The agencies as well as fraudsters recruit the job seekers using a variety of techniques, including sources from online job-providing websites. By applying Machine Learning algorithms, researchers aim to decrease the number of such fraudulent and fake attempts. In this article, classifiers such as K-Nearest Neighbour, Support Vector Machine, and Extreme Gradient Boosting algorithms are implemented for fake advertisement prediction. The performances of the machine learning algorithms are evaluated using metrics such as accuracy, F1 measures, precision and recall.","PeriodicalId":74231,"journal":{"name":"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale multimodal medical imaging : Third International Workshop, MMMI 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022, proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jaicn.2022.3.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Most companies nowadays use digital platforms to host conferences, job interviews, and other business events. The unexpected increase in the need for internet platforms has resulted in a rapid rise of fraud advertising. The agencies as well as fraudsters recruit the job seekers using a variety of techniques, including sources from online job-providing websites. By applying Machine Learning algorithms, researchers aim to decrease the number of such fraudulent and fake attempts. In this article, classifiers such as K-Nearest Neighbour, Support Vector Machine, and Extreme Gradient Boosting algorithms are implemented for fake advertisement prediction. The performances of the machine learning algorithms are evaluated using metrics such as accuracy, F1 measures, precision and recall.