Extracting social events for learning better information diffusion models

Shuyang Lin, Fengjiao Wang, Qingbo Hu, Philip S. Yu
{"title":"Extracting social events for learning better information diffusion models","authors":"Shuyang Lin, Fengjiao Wang, Qingbo Hu, Philip S. Yu","doi":"10.1145/2487575.2487584","DOIUrl":null,"url":null,"abstract":"Learning of the information diffusion model is a fundamental problem in the study of information diffusion in social networks. Existing approaches learn the diffusion models from events in social networks. However, events in social networks may have different underlying reasons. Some of them may be caused by the social influence inside the network, while others may reflect external trends in the ``real world''. Most existing work on the learning of diffusion models does not distinguish the events caused by the social influence from those caused by external trends. In this paper, we extract social events from data streams in social networks, and then use the extracted social events to improve the learning of information diffusion models. We propose a LADP (Latent Action Diffusion Path) model to incorporate the information diffusion model with the model of external trends, and then design an EM-based algorithm to infer the diffusion probabilities, the external trends and the sources of events efficiently.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Learning of the information diffusion model is a fundamental problem in the study of information diffusion in social networks. Existing approaches learn the diffusion models from events in social networks. However, events in social networks may have different underlying reasons. Some of them may be caused by the social influence inside the network, while others may reflect external trends in the ``real world''. Most existing work on the learning of diffusion models does not distinguish the events caused by the social influence from those caused by external trends. In this paper, we extract social events from data streams in social networks, and then use the extracted social events to improve the learning of information diffusion models. We propose a LADP (Latent Action Diffusion Path) model to incorporate the information diffusion model with the model of external trends, and then design an EM-based algorithm to infer the diffusion probabilities, the external trends and the sources of events efficiently.
提取社会事件以学习更好的信息扩散模型
信息扩散模型的学习是社会网络中信息扩散研究的一个基本问题。现有的方法是从社会网络中的事件中学习扩散模型。然而,社交网络中的事件可能有不同的潜在原因。其中一些可能是由网络内部的社会影响造成的,而另一些则可能反映了“现实世界”的外部趋势。大多数关于扩散模型学习的现有工作没有区分由社会影响引起的事件和由外部趋势引起的事件。本文从社交网络的数据流中提取社交事件,然后利用提取的社交事件来改进信息扩散模型的学习。我们提出了一种将信息扩散模型与外部趋势模型相结合的LADP (Latent Action Diffusion Path)模型,然后设计了一种基于em的算法来有效地推断扩散概率、外部趋势和事件来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信