Capillary surfaces: Stability, index and curvature estimates

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hansol Hong, Artur B. Saturnino
{"title":"Capillary surfaces: Stability, index and curvature estimates","authors":"Hansol Hong, Artur B. Saturnino","doi":"10.1515/crelle-2023-0050","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate the connection between the index and the geometry and topology of capillary surfaces. We prove an index estimate for compact capillary surfaces immersed in general 3-manifolds with boundary. We also study noncompact capillary surfaces with finite index and show that, under suitable curvature assumptions, such surface is conformally equivalent to a compact Riemann surface with boundary, punctured at finitely many points. We then prove that a weakly stable capillary surface immersed in a half-space of R 3 \\mathbb{R}^{3} which is minimal or has a contact angle less than or equal to π / 2 \\pi/2 must be a half-plane. Using this uniqueness result, we obtain curvature estimates for strongly stable capillary surfaces immersed in a 3-manifold with bounded geometry.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0050","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract In this paper, we investigate the connection between the index and the geometry and topology of capillary surfaces. We prove an index estimate for compact capillary surfaces immersed in general 3-manifolds with boundary. We also study noncompact capillary surfaces with finite index and show that, under suitable curvature assumptions, such surface is conformally equivalent to a compact Riemann surface with boundary, punctured at finitely many points. We then prove that a weakly stable capillary surface immersed in a half-space of R 3 \mathbb{R}^{3} which is minimal or has a contact angle less than or equal to π / 2 \pi/2 must be a half-plane. Using this uniqueness result, we obtain curvature estimates for strongly stable capillary surfaces immersed in a 3-manifold with bounded geometry.
毛细管表面:稳定性,指数和曲率估计
摘要本文研究了毛细管表面几何和拓扑结构与该指数的关系。证明了一般具有边界的3-流形中紧致毛细曲面的指数估计。我们还研究了具有有限指数的非紧致毛细曲面,并证明了在适当的曲率假设下,这种曲面的共形等价于具有边界的紧致黎曼曲面。然后,我们证明了浸没在r3 \mathbb{R}^{3}的半空间中的弱稳定毛细表面,其接触角最小或小于或等于π /2 \pi/2必须是半平面。利用这一唯一性结果,我们得到了浸入具有有界几何的3流形中的强稳定毛细曲面的曲率估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信