On the Decidability of Membership in Matrix-exponential Semigroups

J. Ouaknine, Amaury Pouly, João Sousa-Pinto, J. Worrell
{"title":"On the Decidability of Membership in Matrix-exponential Semigroups","authors":"J. Ouaknine, Amaury Pouly, João Sousa-Pinto, J. Worrell","doi":"10.1145/3286487","DOIUrl":null,"url":null,"abstract":"We consider the decidability of the membership problem for matrix-exponential semigroups: Given k∈ N and square matrices A1, … , Ak, C, all of the same dimension and with real algebraic entries, decide whether C is contained in the semigroup generated by the matrix exponentials exp (Ai t), where i∈ { 1,… ,k} and t ≥ 0. This problem can be seen as a continuous analog of Babai et al.’s and Cai et al.’s problem of solving multiplicative matrix equations and has applications to reachability analysis of linear hybrid automata and switching systems. Our main results are that the semigroup membership problem is undecidable in general, but decidable if we assume that A1, … , Ak commute. The decidability proof is by reduction to a version of integer programming that has transcendental constants. We give a decision procedure for the latter using Baker’s theorem on linear forms in logarithms of algebraic numbers, among other tools. The undecidability result is shown by reduction from Hilbert’s Tenth Problem.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3286487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the decidability of the membership problem for matrix-exponential semigroups: Given k∈ N and square matrices A1, … , Ak, C, all of the same dimension and with real algebraic entries, decide whether C is contained in the semigroup generated by the matrix exponentials exp (Ai t), where i∈ { 1,… ,k} and t ≥ 0. This problem can be seen as a continuous analog of Babai et al.’s and Cai et al.’s problem of solving multiplicative matrix equations and has applications to reachability analysis of linear hybrid automata and switching systems. Our main results are that the semigroup membership problem is undecidable in general, but decidable if we assume that A1, … , Ak commute. The decidability proof is by reduction to a version of integer programming that has transcendental constants. We give a decision procedure for the latter using Baker’s theorem on linear forms in logarithms of algebraic numbers, among other tools. The undecidability result is shown by reduction from Hilbert’s Tenth Problem.
矩阵-指数半群中隶属性的可判定性
考虑矩阵-指数半群的隶属性问题的可判定性:给定k∈N和具有实数代数项的相同维数的方阵A1,…,Ak, C,判断C是否包含在由矩阵指数exp (Ai)生成的半群中,其中i∈{1,…,k}且t≥0。这个问题可以看作是Babai等人和Cai等人求解乘法矩阵方程问题的连续模拟,并应用于线性混合自动机和切换系统的可达性分析。我们的主要结果是,一般情况下,半群隶属性问题是不可判定的,但如果我们假设A1,…,Ak可交换,则是可判定的。可决性证明是通过简化为具有超越常数的整数规划的一个版本。我们利用代数数对数线性形式的贝克定理,给出了后者的判定过程。通过对希尔伯特第十问题的化简,得到了不确定性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信