M. Abdelhamid, Ayman A. Atallah, Marwan Ammar, O. Mohamed
{"title":"Reliability Analysis Of Autonomous UAV Communication Using Statistical Model Checking","authors":"M. Abdelhamid, Ayman A. Atallah, Marwan Ammar, O. Mohamed","doi":"10.1109/MWSCAS47672.2021.9531675","DOIUrl":null,"url":null,"abstract":"Reliable data communication is fundamental for the proper functioning of autonomous Unmanned Aerial Vehicles (UAVs). Different factors such as transmission power and antenna gain can affect the reliability of a communication protocol. This paper proposes a statistical model checking framework to evaluate the signal strength and availability of a communication device in the presence of single event upsets (SEUs). Our results may provide insights on the effect of different UAV components and specifications, like SEU rate, on the communication failure. The replacement negotiation scenario built on the Micro Aerial vehicle link (MAVlink) protocol and Bluetooth telemetry specifications such as receiver sensitivity threshold, frequency operation, and maximum transmission power are used to demonstrate the framework’s applicability. Our results indicate that the expected communication reliability is higher than 90% when the transmission power is at least 3.2 dBm.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"174 1","pages":"340-343"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Reliable data communication is fundamental for the proper functioning of autonomous Unmanned Aerial Vehicles (UAVs). Different factors such as transmission power and antenna gain can affect the reliability of a communication protocol. This paper proposes a statistical model checking framework to evaluate the signal strength and availability of a communication device in the presence of single event upsets (SEUs). Our results may provide insights on the effect of different UAV components and specifications, like SEU rate, on the communication failure. The replacement negotiation scenario built on the Micro Aerial vehicle link (MAVlink) protocol and Bluetooth telemetry specifications such as receiver sensitivity threshold, frequency operation, and maximum transmission power are used to demonstrate the framework’s applicability. Our results indicate that the expected communication reliability is higher than 90% when the transmission power is at least 3.2 dBm.