An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance

IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jan Ga̧sienica-Józkowy, Mateusz Knapik, B. Cyganek
{"title":"An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance","authors":"Jan Ga̧sienica-Józkowy, Mateusz Knapik, B. Cyganek","doi":"10.3233/ICA-210649","DOIUrl":null,"url":null,"abstract":"Today’s deep learning architectures, if trained with proper dataset, can be used for object detection in marine search and rescue operations. In this paper a dataset for maritime search and rescue purposes is proposed. It contains aerial-drone videos with 40,000 hand-annotated persons and objects floating in the water, many of small size, which makes them difficult to detect. The second contribution is our proposed object detection method. It is an ensemble composed of a number of the deep convolutional neural networks, orchestrated by the fusion module with the nonlinearly optimized voting weights. The method achieves over 82% of average precision on the new aerial-drone floating objects dataset and outperforms each of the state-of-the-art deep neural networks, such as YOLOv3, -v4, Faster R-CNN, RetinaNet, and SSD300. The dataset is publicly available from the Internet.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"1 1","pages":"221-235"},"PeriodicalIF":5.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ICA-210649","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 31

Abstract

Today’s deep learning architectures, if trained with proper dataset, can be used for object detection in marine search and rescue operations. In this paper a dataset for maritime search and rescue purposes is proposed. It contains aerial-drone videos with 40,000 hand-annotated persons and objects floating in the water, many of small size, which makes them difficult to detect. The second contribution is our proposed object detection method. It is an ensemble composed of a number of the deep convolutional neural networks, orchestrated by the fusion module with the nonlinearly optimized voting weights. The method achieves over 82% of average precision on the new aerial-drone floating objects dataset and outperforms each of the state-of-the-art deep neural networks, such as YOLOv3, -v4, Faster R-CNN, RetinaNet, and SSD300. The dataset is publicly available from the Internet.
基于无人机的水上救援与监视的优化权值集成深度学习方法
今天的深度学习架构,如果经过适当的数据集训练,可以用于海上搜索和救援行动中的目标检测。本文提出了一个用于海上搜救的数据集。它包含了空中无人机拍摄的视频,其中有4万个漂浮在水中的人工标注的人和物体,其中许多体积很小,很难被发现。第二个贡献是我们提出的目标检测方法。它是由多个深度卷积神经网络组成的整体,由融合模块与非线性优化的投票权进行协调。该方法在新的空中无人机漂浮物数据集上实现了超过82%的平均精度,并且优于每个最先进的深度神经网络,如YOLOv3, -v4, Faster R-CNN, RetinaNet和SSD300。该数据集可从互联网上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Integrated Computer-Aided Engineering
Integrated Computer-Aided Engineering 工程技术-工程:综合
CiteScore
9.90
自引率
21.50%
发文量
21
审稿时长
>12 weeks
期刊介绍: Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal. The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信