An approximate Taylor method for Stochastic Functional Differential Equations via polynomial condition

IF 0.8 4区 数学 Q2 MATHEMATICS
D. Djordjević, M. Milosevic
{"title":"An approximate Taylor method for Stochastic Functional Differential Equations via polynomial condition","authors":"D. Djordjević, M. Milosevic","doi":"10.2478/auom-2021-0037","DOIUrl":null,"url":null,"abstract":"Abstract The subject of this paper is an analytic approximate method for a class of stochastic functional differential equations with coefficients that do not necessarily satisfy the Lipschitz condition nor linear growth condition but they satisfy some polynomial conditions. Also, equations from the observed class have unique solutions with bounded moments. Approximate equations are defined on partitions of the time interval and their drift and diffusion coefficients are Taylor approximations of the coefficients of the initial equation. Taylor approximations require Fréchet derivatives since the coefficients of the initial equation are functionals. The main results of this paper are the Lp and almost sure convergence of the sequence of the approximate solutions to the exact solution of the initial equation. An example that illustrates the theoretical results and contains the proof of the existence, uniqueness and moment boundedness of the approximate solution is displayed.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"6 1","pages":"105 - 133"},"PeriodicalIF":0.8000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The subject of this paper is an analytic approximate method for a class of stochastic functional differential equations with coefficients that do not necessarily satisfy the Lipschitz condition nor linear growth condition but they satisfy some polynomial conditions. Also, equations from the observed class have unique solutions with bounded moments. Approximate equations are defined on partitions of the time interval and their drift and diffusion coefficients are Taylor approximations of the coefficients of the initial equation. Taylor approximations require Fréchet derivatives since the coefficients of the initial equation are functionals. The main results of this paper are the Lp and almost sure convergence of the sequence of the approximate solutions to the exact solution of the initial equation. An example that illustrates the theoretical results and contains the proof of the existence, uniqueness and moment boundedness of the approximate solution is displayed.
基于多项式条件的随机泛函微分方程的近似泰勒方法
摘要本文研究了一类随机泛函微分方程的解析近似方法,这类方程的系数既不满足Lipschitz条件,也不满足线性增长条件,但满足多项式条件。同时,从观测类中得到的方程具有具有有限矩的唯一解。在时间间隔的分区上定义近似方程,其漂移系数和扩散系数是初始方程系数的泰勒近似。由于初始方程的系数是泛函的,所以泰勒近似需要fr导数。本文的主要结果是初值方程的精确解的近似解序列的Lp和几乎肯定收敛性。给出了一个例子,说明了理论结果,并证明了近似解的存在性、唯一性和矩有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信