Smartphone-Based Pavement Roughness Estimation Using Deep Learning with Entity Embedding

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Armstrong Aboah, Y. Adu-Gyamfi
{"title":"Smartphone-Based Pavement Roughness Estimation Using Deep Learning with Entity Embedding","authors":"Armstrong Aboah, Y. Adu-Gyamfi","doi":"10.1142/s2424922x20500072","DOIUrl":null,"url":null,"abstract":"The commonly used index for measuring pavement roughness is the International Roughness index (IRI). Traditional method for collecting road surface information is expensive and as such researchers over the years have resorted to other cheaper ways of collecting data. This study focuses on developing a deep learning model to quickly and accurately determine the IRI values of road sections at a cheaper cost. The study proposed a model that uses accelerometer data and previous year’s IRI values to predict current year IRI values. The study concludes that addition of accelerometer readings to previous year’s IRIs increased the accuracy of prediction.","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"37 1","pages":"2050007:1-2050007:20"},"PeriodicalIF":0.5000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424922x20500072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 19

Abstract

The commonly used index for measuring pavement roughness is the International Roughness index (IRI). Traditional method for collecting road surface information is expensive and as such researchers over the years have resorted to other cheaper ways of collecting data. This study focuses on developing a deep learning model to quickly and accurately determine the IRI values of road sections at a cheaper cost. The study proposed a model that uses accelerometer data and previous year’s IRI values to predict current year IRI values. The study concludes that addition of accelerometer readings to previous year’s IRIs increased the accuracy of prediction.
基于实体嵌入深度学习的智能手机路面粗糙度估计
衡量路面粗糙度的常用指标是国际粗糙度指数(IRI)。收集路面信息的传统方法是昂贵的,因此研究人员多年来一直采用其他更便宜的收集数据的方法。本研究的重点是开发一种深度学习模型,以更低的成本快速准确地确定路段的IRI值。该研究提出了一个模型,使用加速度计数据和前一年的IRI值来预测当前年份的IRI值。该研究的结论是,在前一年的IRIs中增加加速度计的读数提高了预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信