Extremal trees for the Randić index

Pub Date : 2022-12-01 DOI:10.2478/ausm-2022-0016
A. Jahanbani, H. Shooshtari, Y. Shang
{"title":"Extremal trees for the Randić index","authors":"A. Jahanbani, H. Shooshtari, Y. Shang","doi":"10.2478/ausm-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract Graph theory has applications in various fields due to offering important tools such as topological indices. Among the topological indices, the Randić index is simple and of great importance. The Randić index of a graph 𝒢 can be expressed as R(G)=∑xy∈Y(G)1τ(x)τ(y) R\\left( G \\right) = \\sum\\nolimits_{xy \\in Y\\left( G \\right)} {{1 \\over {\\sqrt {\\tau \\left( x \\right)\\tau \\left( y \\right)} }}} , where 𝒴(𝒢) represents the edge set and τ(x) is the degree of vertex x. In this paper, considering the importance of the Randić index and applications two-trees graphs, we determine the first two minimums among the two-trees graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2022-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Graph theory has applications in various fields due to offering important tools such as topological indices. Among the topological indices, the Randić index is simple and of great importance. The Randić index of a graph 𝒢 can be expressed as R(G)=∑xy∈Y(G)1τ(x)τ(y) R\left( G \right) = \sum\nolimits_{xy \in Y\left( G \right)} {{1 \over {\sqrt {\tau \left( x \right)\tau \left( y \right)} }}} , where 𝒴(𝒢) represents the edge set and τ(x) is the degree of vertex x. In this paper, considering the importance of the Randić index and applications two-trees graphs, we determine the first two minimums among the two-trees graphs.
分享
查看原文
兰迪奇指数的极值树
图论由于提供了拓扑指标等重要工具,在各个领域都有广泛的应用。在拓扑指标中,兰迪奇指数是一种简单而重要的指标。图𝒢的randici指数可表示为R(G)=∑xy∈Y(G)1τ(x)τ(Y) R \left (G \right)= \sum\nolimits _xy{\in Y \left (G \right)}1 {{\over{\sqrt{\tau\left (x \right) \tau\left (Y \right),}其中𝒴(𝒢)表示边集,τ(x)表示顶点x的度。考虑到兰迪奇指数的重要性和二树图的应用,我们确定了二树图中的前两个最小值。}}}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信