Galois and Post Algebras of Compositions (Superpositions)

IF 0.2 Q4 MATHEMATICS
M. Malkov
{"title":"Galois and Post Algebras of Compositions (Superpositions)","authors":"M. Malkov","doi":"10.11648/J.PAMJ.20170604.12","DOIUrl":null,"url":null,"abstract":"The Galois algebra and the universal Post algebra of compositions are constructed. The universe of the Galois algebra contains relations, both discrete and continuous. The found proofs of Galois connections are shorter and simpler. It is noted that anti-isomorphism of the two algebras of functions and of relations allows to transfer the results of the modern algebra of functions to the algebra of relations, and vice versa, to transfer the results of the modern algebra of relations to the algebra of functions. A new Post algebra is constructed by using pre-iterative algebra and by adding relations as one more universe of the algebra. The universes of relations and functions are discrete or continuous. It is proved that the Post algebra of relations and the Galois algebra are equal. This allows to replace the operation of conjunction by the operation of substitution and to exclude the operation of exist quantifier.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2017-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.PAMJ.20170604.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The Galois algebra and the universal Post algebra of compositions are constructed. The universe of the Galois algebra contains relations, both discrete and continuous. The found proofs of Galois connections are shorter and simpler. It is noted that anti-isomorphism of the two algebras of functions and of relations allows to transfer the results of the modern algebra of functions to the algebra of relations, and vice versa, to transfer the results of the modern algebra of relations to the algebra of functions. A new Post algebra is constructed by using pre-iterative algebra and by adding relations as one more universe of the algebra. The universes of relations and functions are discrete or continuous. It is proved that the Post algebra of relations and the Galois algebra are equal. This allows to replace the operation of conjunction by the operation of substitution and to exclude the operation of exist quantifier.
伽罗瓦与复合后代数(叠加)
构造了组合的伽罗瓦代数和普适后代数。伽罗瓦代数的范围包含了离散的和连续的关系。已发现的伽罗瓦联系的证明更短更简单。值得注意的是,函数和关系的两个代数的反同构允许将现代函数代数的结果转移到关系代数,反之亦然,将现代关系代数的结果转移到函数代数。利用预迭代代数,将关系作为代数的一个多域,构造了一个新的后代数。关系和函数的范围是离散的或连续的。证明了关系的后代数与伽罗瓦代数是相等的。这允许用替换操作代替连接操作,并排除存在量词的操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信