Image-based Seat Belt Fastness Detection using Deep Learning

Pub Date : 2022-12-24 DOI:10.12694/scpe.v23i4.2027
Rupal A. Kapdi, Pimal Khanpara, Rohan Modi, M. Gupta
{"title":"Image-based Seat Belt Fastness Detection using Deep Learning","authors":"Rupal A. Kapdi, Pimal Khanpara, Rohan Modi, M. Gupta","doi":"10.12694/scpe.v23i4.2027","DOIUrl":null,"url":null,"abstract":"The detection of seat belts is an essential aspect of vehicle safety. It is crucial in providing protection in the event of an accident. Seat belt detection devices are installed into many automobiles, although they may be easily manipulated or disregarded. As a result, the existing approaches and algorithms for seat belt detection are insufficient. Using various external methods and algorithms, it is required to determine if the seat belt is fastened or not. This paper proposes an approach to identify seat belt fastness using the concepts of image processing and deep learning. Our proposed approach can be deployed in any organizational setup to aid the concerned authorities in identifying whether or not the drivers of the vehicles passing through the entrance have buckled their seat belts up. If a seat belt is not detected in a vehicle, the number plate recognition module records the vehicle number. The concerned authorities might use this record to take further necessary actions. This way, the organization authorities can keep track of all the vehicles entering the premises and ensure that all drivers/shotgun seat passengers are wearing seat belts.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12694/scpe.v23i4.2027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The detection of seat belts is an essential aspect of vehicle safety. It is crucial in providing protection in the event of an accident. Seat belt detection devices are installed into many automobiles, although they may be easily manipulated or disregarded. As a result, the existing approaches and algorithms for seat belt detection are insufficient. Using various external methods and algorithms, it is required to determine if the seat belt is fastened or not. This paper proposes an approach to identify seat belt fastness using the concepts of image processing and deep learning. Our proposed approach can be deployed in any organizational setup to aid the concerned authorities in identifying whether or not the drivers of the vehicles passing through the entrance have buckled their seat belts up. If a seat belt is not detected in a vehicle, the number plate recognition module records the vehicle number. The concerned authorities might use this record to take further necessary actions. This way, the organization authorities can keep track of all the vehicles entering the premises and ensure that all drivers/shotgun seat passengers are wearing seat belts.
分享
查看原文
基于图像的深度学习安全带牢度检测
安全带的检测是车辆安全的一个重要方面。在发生事故时提供保护是至关重要的。许多汽车都安装了安全带检测装置,尽管它们可能很容易被操纵或忽视。因此,现有的安全带检测方法和算法存在不足。需要使用各种外部方法和算法来确定安全带是否系好。本文提出了一种利用图像处理和深度学习的概念来识别安全带牢度的方法。我们提出的方法可以在任何组织机构中部署,以帮助有关当局确定通过入口的车辆的司机是否系好安全带。如果在车辆中没有检测到安全带,车牌识别模块将记录车辆编号。有关当局可以利用这一记录采取进一步的必要行动。这样,组织当局可以跟踪所有进入场所的车辆,并确保所有驾驶员/副驾驶座位的乘客都系好安全带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信