G. Vainikko
{"title":"Which Functions are Fractionally Differentiable","authors":"G. Vainikko","doi":"10.4171/ZAA/1574","DOIUrl":null,"url":null,"abstract":"s of MMA2015, May 26–29, 2015, Sigulda, Latvia c © 2015 WHICH FUNCTIONS ARE FRACTIONALLY DIFFERENTIABLE? G. VAINIKKO Institute of Mathematics, University of Tartu Liivi 2, Tartu 50409, Estonia E-mail: gennadi.vainikko@ut.ee We define a fractional differentiation operator as the inverse to Riemann-Liouville integral operator, and examine the relations of this most natural concept with more popular fractional differentiation operators of Riemann-Liouville and Caputo. Our main result concerns the description of the range of Riemann-Liouville integral operator in the space of continuous functions. As the result we can describe, in particular, the class of functions that are differentiable in the sense of Riemann-Liouville and Caputo. Also the Abel equation with coefficient function of two variables can be examined on the basis of Riemann-Liouville’s operator inversion.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
哪些函数是分数可微的
5 of MMA2015, May 26-29, Sigulda, Latvia c©2015哪些函数是分数可微的?我们将分数阶微分算子定义为Riemann-Liouville积分算子的逆算子,并研究了这个最自然的概念与更流行的Riemann-Liouville和Caputo分数阶微分算子的关系。我们的主要结果是关于连续函数空间中Riemann-Liouville积分算子的值域的描述。因此,我们可以特别地描述一类在黎曼-刘维尔和卡普托意义上可微的函数。在Riemann-Liouville算子反演的基础上,还可以检验具有两个变量的系数函数的Abel方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。