Elucidating the Regulatory Functions of MlrA Originated from Novosphingobium sp. THN1 in Microcystin-LR Degradation

Jieming Li, Ruiping Wang, Ji Li
{"title":"Elucidating the Regulatory Functions of MlrA Originated from Novosphingobium sp. THN1 in Microcystin-LR Degradation","authors":"Jieming Li, Ruiping Wang, Ji Li","doi":"10.4172/2161-0525.1000556","DOIUrl":null,"url":null,"abstract":"Microcystin-LR (MC-LR), produced by harmful cyanobacteria, seriously endangers animals and humans. Biodegradation appears as the major pathway for natural MC-LR attenuation. To elucidate the regulatory function of mlrA gene of Novosphingobium sp. THN1 (i.e., THN1-mlrA gene) in MC-LR biodegradation, this study constructed a recombinant bacterium and succeeded in heterlogously expressing the mlrA of THN1 strain (i.e., THN1-MlrA enzyme). The recombinant mlrA exhibited the activity for smoothly degrading 20 μg mL-1 of MC-LR at an average rate of 0.16 μg mL-1 h-1 within 80 h. Mass spectrum analysis confirmed that recombinant mlrA hydrolyzed cyclic MC-LR by cleaving the peptide bond between Adda and arginine residue and generated linearized MC-LR as primary intermediate. Such linearization for MC-LR catalyzed by THN1-MlrA enzyme was particularly important during MC-LR biodegradation process, because it opened the highly-stable cyclic structure of MC-LR and caused substantial detoxification. These findings for the first time manifested that mlrA gene homolog of Novosphingobium genus conserved its original catalytic function as described elsewhere. This study expanded the knowledge on the function of mlrA homologs from various natural habitats, and facilitated the understanding on the fate and biological attenuation mechanisms of MC-LR in Lake Taihu, China, where THN1 strain is indigenous.","PeriodicalId":15742,"journal":{"name":"Journal of Environmental and Analytical Toxicology","volume":"15 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Analytical Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-0525.1000556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Microcystin-LR (MC-LR), produced by harmful cyanobacteria, seriously endangers animals and humans. Biodegradation appears as the major pathway for natural MC-LR attenuation. To elucidate the regulatory function of mlrA gene of Novosphingobium sp. THN1 (i.e., THN1-mlrA gene) in MC-LR biodegradation, this study constructed a recombinant bacterium and succeeded in heterlogously expressing the mlrA of THN1 strain (i.e., THN1-MlrA enzyme). The recombinant mlrA exhibited the activity for smoothly degrading 20 μg mL-1 of MC-LR at an average rate of 0.16 μg mL-1 h-1 within 80 h. Mass spectrum analysis confirmed that recombinant mlrA hydrolyzed cyclic MC-LR by cleaving the peptide bond between Adda and arginine residue and generated linearized MC-LR as primary intermediate. Such linearization for MC-LR catalyzed by THN1-MlrA enzyme was particularly important during MC-LR biodegradation process, because it opened the highly-stable cyclic structure of MC-LR and caused substantial detoxification. These findings for the first time manifested that mlrA gene homolog of Novosphingobium genus conserved its original catalytic function as described elsewhere. This study expanded the knowledge on the function of mlrA homologs from various natural habitats, and facilitated the understanding on the fate and biological attenuation mechanisms of MC-LR in Lake Taihu, China, where THN1 strain is indigenous.
Novosphingobium sp. THN1源MlrA在微囊藻毒素- lr降解中的调控作用
微囊藻毒素lr (microcytin - lr, MC-LR)是由有害的蓝藻细菌产生的,严重危害动物和人类。生物降解是自然降解MC-LR的主要途径。为了阐明Novosphingobium sp. THN1的mlrA基因(即THN1-mlrA基因)在MC-LR生物降解中的调控作用,本研究构建了重组菌,成功地异源表达了THN1菌株的mlrA(即THN1-mlrA酶)。重组mlrA在80 h内可顺利降解20 μg mL-1的MC-LR,平均降解速率为0.16 μg mL-1 h-1。质谱分析证实,重组mlrA通过切断Adda和精氨酸残基之间的肽键水解环状MC-LR,生成线性化的MC-LR作为一级中间体。这种由THN1-MlrA酶催化的MC-LR线性化在MC-LR生物降解过程中尤为重要,因为它打开了MC-LR高度稳定的循环结构,并产生了大量的解毒作用。这些发现首次证实了Novosphingobium属的mlrA基因同源物保留了其原始的催化功能。本研究扩大了对不同自然生境中mlrA同源物功能的认识,促进了对THN1本土菌株所在的中国太湖MC-LR命运和生物衰减机制的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信