Continuous Emotions: Exploring Label Interpolation in Conditional Generative Adversarial Networks for Face Generation

Silvan Mertes, F. Lingenfelser, Thomas Kiderle, Michael Dietz, Lama Diab, E. André
{"title":"Continuous Emotions: Exploring Label Interpolation in Conditional Generative Adversarial Networks for Face Generation","authors":"Silvan Mertes, F. Lingenfelser, Thomas Kiderle, Michael Dietz, Lama Diab, E. André","doi":"10.5220/0010549401320139","DOIUrl":null,"url":null,"abstract":"The ongoing rise of Generative Adversarial Networks is opening the possibility to create highly-realistic, natural looking images in various fields of application. One particular example is the generation of emotional human face images that can be applied to diverse use-cases such as automated avatar generation. However, most conditional approaches to create such emotional faces are addressing categorical emotional states, making smooth transitions between emotions difficult. In this work, we explore the possibilities of label interpolation in order to enhance a network that was trained on categorical emotions with the ability to generate face images that show emotions located in a continuous valence-arousal space.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"2 1","pages":"132-139"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010549401320139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The ongoing rise of Generative Adversarial Networks is opening the possibility to create highly-realistic, natural looking images in various fields of application. One particular example is the generation of emotional human face images that can be applied to diverse use-cases such as automated avatar generation. However, most conditional approaches to create such emotional faces are addressing categorical emotional states, making smooth transitions between emotions difficult. In this work, we explore the possibilities of label interpolation in order to enhance a network that was trained on categorical emotions with the ability to generate face images that show emotions located in a continuous valence-arousal space.
连续情绪:探索标签插值在条件生成对抗网络的人脸生成
生成对抗网络(Generative Adversarial Networks)的不断兴起,为在各种应用领域创建高度逼真、自然的图像提供了可能性。一个特别的例子是可以应用于各种用例的情感人脸图像的生成,例如自动生成化身。然而,大多数创造这种情绪面孔的条件方法都是针对分类情绪状态,使得情绪之间的平稳过渡变得困难。在这项工作中,我们探索了标签插值的可能性,以增强在分类情绪上训练的网络,使其能够生成显示位于连续价-唤醒空间中的情绪的面部图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信