Partite Turán-densities for complete $r$-uniform hypergraphs on $r+1$ vertices

IF 0.4 Q4 MATHEMATICS, APPLIED
K. Markstrom, Carsten Thomassen
{"title":"Partite Turán-densities for complete $r$-uniform hypergraphs on $r+1$ vertices","authors":"K. Markstrom, Carsten Thomassen","doi":"10.4310/joc.2021.v12.n2.a3","DOIUrl":null,"url":null,"abstract":"In this paper we investigate density conditions for finding a complete $r$-uniform hypergraph $K_{r+1}^{(r)}$ on $r+1$ vertices in an $(r+1)$-partite $r$-uniform hypergraph $G$. First we prove an optimal condition in terms of the densities of the $(r+1)$ induced $r$-partite subgraphs of $G$. Second, we prove a version of this result where we assume that $r$-tuples of vertices in $G$ have their neighbours evenly distributed in $G$. Third, we also prove a counting result for the minimum number of copies of $K_{r+1}^{(r)}$ when $G$ satisfies our density bound, and present some open problems. A striking difference between the graph, $r=2$, and the hypergraph, $ r \\geq 3 $, cases is that in the first case both the existence threshold and the counting function are non-linear in the involved densities, whereas for hypergraphs they are given by a linear function. Also, the smallest density of the $r$-partite parts needed to ensure the existence of a complete $r$-graph with $(r+1)$ vertices is equal to the golden ratio $\\tau=0.618\\ldots$ for $r=2$, while it is $\\frac{r}{r+1}$for $r\\geq3$.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2021.v12.n2.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate density conditions for finding a complete $r$-uniform hypergraph $K_{r+1}^{(r)}$ on $r+1$ vertices in an $(r+1)$-partite $r$-uniform hypergraph $G$. First we prove an optimal condition in terms of the densities of the $(r+1)$ induced $r$-partite subgraphs of $G$. Second, we prove a version of this result where we assume that $r$-tuples of vertices in $G$ have their neighbours evenly distributed in $G$. Third, we also prove a counting result for the minimum number of copies of $K_{r+1}^{(r)}$ when $G$ satisfies our density bound, and present some open problems. A striking difference between the graph, $r=2$, and the hypergraph, $ r \geq 3 $, cases is that in the first case both the existence threshold and the counting function are non-linear in the involved densities, whereas for hypergraphs they are given by a linear function. Also, the smallest density of the $r$-partite parts needed to ensure the existence of a complete $r$-graph with $(r+1)$ vertices is equal to the golden ratio $\tau=0.618\ldots$ for $r=2$, while it is $\frac{r}{r+1}$for $r\geq3$.
$r$-一致超图在$r+1$顶点上的完全部Turán-densities
本文研究了在$(r+1)$ -部$r$ -均匀超图$G$的$r+1$顶点上找到完全$r$ -均匀超图$K_{r+1}^{(r)}$的密度条件。首先,我们证明了一个关于$G$的$(r+1)$诱导的$r$ -部子图的密度的最优条件。其次,我们证明了这个结果的一个版本,我们假设$G$中的顶点的$r$ -元组在$G$中有它们的邻居均匀分布。第三,我们还证明了$G$满足密度界时$K_{r+1}^{(r)}$的最小副本数的计数结果,并提出了一些开放问题。图$r=2$和超图$ r \geq 3 $之间的一个显著区别是,在第一种情况下,存在阈值和计数函数在涉及的密度中都是非线性的,而对于超图来说,它们是由线性函数给出的。此外,确保具有$(r+1)$个顶点的完整$r$ -图的存在所需的$r$ -部分的最小密度等于$r=2$的黄金比例$\tau=0.618\ldots$,而$r\geq3$的黄金比例为$\frac{r}{r+1}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信