Scaling NWChem with Efficient and Portable Asynchronous Communication in MPI RMA

Min Si, Antonio J. Peña, J. Hammond, P. Balaji, Y. Ishikawa
{"title":"Scaling NWChem with Efficient and Portable Asynchronous Communication in MPI RMA","authors":"Min Si, Antonio J. Peña, J. Hammond, P. Balaji, Y. Ishikawa","doi":"10.1109/CCGrid.2015.48","DOIUrl":null,"url":null,"abstract":"NWChem is one of the most widely used computational chemistry application suites for chemical and biological systems. Despite its vast success, the computational efficiency of NWChem is still low. This is especially true in higher accuracy methods such as the CCSD(T) coupled cluster method, where it currently achieves a mere 50% computational efficiency when run at large scales. In this paper, we demonstrate the most computationally efficient scaling of NWChem CCSD(T) to date, and use it to solve large water clusters. We use our recently proposed process-based asynchronous progress framework for MPI RMA, called Casper, to scale the computation on water clusters at near-100% computational efficiency on up to 12288 cores.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"3 1","pages":"811-816"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

NWChem is one of the most widely used computational chemistry application suites for chemical and biological systems. Despite its vast success, the computational efficiency of NWChem is still low. This is especially true in higher accuracy methods such as the CCSD(T) coupled cluster method, where it currently achieves a mere 50% computational efficiency when run at large scales. In this paper, we demonstrate the most computationally efficient scaling of NWChem CCSD(T) to date, and use it to solve large water clusters. We use our recently proposed process-based asynchronous progress framework for MPI RMA, called Casper, to scale the computation on water clusters at near-100% computational efficiency on up to 12288 cores.
基于MPI RMA的高效可移植异步通信扩展NWChem
NWChem是化学和生物系统中使用最广泛的计算化学应用套件之一。尽管取得了巨大的成功,但NWChem的计算效率仍然很低。这在精度更高的方法中尤其如此,例如CCSD(T)耦合簇方法,在大规模运行时,它目前的计算效率仅为50%。在本文中,我们展示了迄今为止计算效率最高的NWChem CCSD(T)缩放,并将其用于求解大型水簇。我们使用我们最近提出的基于进程的MPI RMA异步进程框架,称为Casper,在高达12288核的水集群上以接近100%的计算效率扩展计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信