Self-distilled Named Entity Recognition Based on Boundary Detection and Biaffine Attention

Yong Song, Zhiwei Yan, Yukun Qin, Xiaozhou Ye, Ye Ouyang
{"title":"Self-distilled Named Entity Recognition Based on Boundary Detection and Biaffine Attention","authors":"Yong Song, Zhiwei Yan, Yukun Qin, Xiaozhou Ye, Ye Ouyang","doi":"10.1109/smartworld-uic-atc-scalcom-digitaltwin-pricomp-metaverse56740.2022.00162","DOIUrl":null,"url":null,"abstract":"Named Entity Recognition (NER) is an important down-streaming task in natural language processing. Span-based methods are applicable to both flat and nested entities. However, they lack explicit boundary supervision. To address this issue, we propose a multi-task and self-distilled model which combines biaffine span classification and entity boundary detection tasks. Firstly, the boundary detection and biaffine span classification models are jointly trained under a multi-task learning framework to address the problem of lacking supervision of boundaries. Then, self-distillation technique is applied on the model to reassign entity probabilities from annotated spans to surrounding spans and more entity types, further improving the accuracy of NER by soft labels that contain richer knowledge. Experiments were based on a high-density entity text dataset of the commodity titles from an e-commerce company. Finally, the experimental results show that our model exhibited a better F1 score than the existing common models.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/smartworld-uic-atc-scalcom-digitaltwin-pricomp-metaverse56740.2022.00162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Named Entity Recognition (NER) is an important down-streaming task in natural language processing. Span-based methods are applicable to both flat and nested entities. However, they lack explicit boundary supervision. To address this issue, we propose a multi-task and self-distilled model which combines biaffine span classification and entity boundary detection tasks. Firstly, the boundary detection and biaffine span classification models are jointly trained under a multi-task learning framework to address the problem of lacking supervision of boundaries. Then, self-distillation technique is applied on the model to reassign entity probabilities from annotated spans to surrounding spans and more entity types, further improving the accuracy of NER by soft labels that contain richer knowledge. Experiments were based on a high-density entity text dataset of the commodity titles from an e-commerce company. Finally, the experimental results show that our model exhibited a better F1 score than the existing common models.
分享
查看原文
基于边界检测和双碱注意的自蒸馏命名实体识别
命名实体识别(NER)是自然语言处理中一个重要的下行任务。基于跨度的方法既适用于平面实体,也适用于嵌套实体。然而,它们缺乏明确的边界监督。为了解决这一问题,我们提出了一种多任务自提取模型,该模型结合了双仿跨度分类和实体边界检测任务。首先,在多任务学习框架下,联合训练边界检测模型和biaffine跨度分类模型,解决边界缺乏监督的问题;然后,在模型上应用自蒸馏技术,将实体概率从标注的跨度重新分配到周围跨度和更多的实体类型,通过包含更丰富知识的软标签进一步提高NER的准确性。实验基于一家电子商务公司商品标题的高密度实体文本数据集。最后,实验结果表明,我们的模型比现有的常用模型具有更好的F1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信