Architectural implications on the performance and cost of graph analytics systems

Qizhen Zhang, Hongzhi Chen, D. Yan, James Cheng, B. T. Loo, P. Bangalore
{"title":"Architectural implications on the performance and cost of graph analytics systems","authors":"Qizhen Zhang, Hongzhi Chen, D. Yan, James Cheng, B. T. Loo, P. Bangalore","doi":"10.1145/3127479.3128606","DOIUrl":null,"url":null,"abstract":"Graph analytics systems have gained significant popularity due to the prevalence of graph data. Many of these systems are designed to run in a shared-nothing architecture whereby a cluster of machines can process a large graph in parallel. In more recent proposals, others have argued that a single-machine system can achieve better performance and/or is more cost-effective. There is however no clear consensus which approach is better. In this paper, we classify existing graph analytics systems into four categories based on the architectural differences, i.e., processing infrastructure (centralized vs distributed), and memory consumption (in-memory vs out-of-core). We select eight open-source systems to cover all categories, and perform a comparative measurement study to compare their performance and cost characteristics across a spectrum of input data, applications, and hardware settings. Our results show that the best performing configuration can depend on the type of applications and input graphs, and there is no dominant winner across all categories. Based on our findings, we summarize the trends in performance and cost, and provide several insights that help to illuminate the performance and resource cost tradeoffs across different graph analytics systems and categories.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3128606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Graph analytics systems have gained significant popularity due to the prevalence of graph data. Many of these systems are designed to run in a shared-nothing architecture whereby a cluster of machines can process a large graph in parallel. In more recent proposals, others have argued that a single-machine system can achieve better performance and/or is more cost-effective. There is however no clear consensus which approach is better. In this paper, we classify existing graph analytics systems into four categories based on the architectural differences, i.e., processing infrastructure (centralized vs distributed), and memory consumption (in-memory vs out-of-core). We select eight open-source systems to cover all categories, and perform a comparative measurement study to compare their performance and cost characteristics across a spectrum of input data, applications, and hardware settings. Our results show that the best performing configuration can depend on the type of applications and input graphs, and there is no dominant winner across all categories. Based on our findings, we summarize the trends in performance and cost, and provide several insights that help to illuminate the performance and resource cost tradeoffs across different graph analytics systems and categories.
图形分析系统的性能和成本的架构含义
由于图形数据的流行,图形分析系统已经获得了显著的普及。许多这样的系统被设计成在无共享架构中运行,这样一组机器可以并行处理一个大的图。在最近的建议中,其他人认为单机系统可以获得更好的性能和/或更具成本效益。然而,对于哪种方法更好并没有明确的共识。在本文中,我们根据架构差异将现有的图形分析系统分为四类,即处理基础设施(集中式vs分布式)和内存消耗(内存内vs外核)。我们选择了八个涵盖所有类别的开源系统,并执行了一项比较测量研究,以在输入数据、应用程序和硬件设置的范围内比较它们的性能和成本特征。我们的结果表明,最佳性能配置取决于应用程序和输入图的类型,并且在所有类别中没有主导的赢家。根据我们的发现,我们总结了性能和成本的趋势,并提供了一些见解,有助于阐明不同图形分析系统和类别之间的性能和资源成本权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信