Gradient boosted feature selection

Z. Xu, Gao Huang, Kilian Q. Weinberger, A. Zheng
{"title":"Gradient boosted feature selection","authors":"Z. Xu, Gao Huang, Kilian Q. Weinberger, A. Zheng","doi":"10.1145/2623330.2623635","DOIUrl":null,"url":null,"abstract":"A feature selection algorithm should ideally satisfy four conditions: reliably extract relevant features; be able to identify non-linear feature interactions; scale linearly with the number of features and dimensions; allow the incorporation of known sparsity structure. In this work we propose a novel feature selection algorithm, Gradient Boosted Feature Selection (GBFS), which satisfies all four of these requirements. The algorithm is flexible, scalable, and surprisingly straight-forward to implement as it is based on a modification of Gradient Boosted Trees. We evaluate GBFS on several real world data sets and show that it matches or outperforms other state of the art feature selection algorithms. Yet it scales to larger data set sizes and naturally allows for domain-specific side information.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"150","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 150

Abstract

A feature selection algorithm should ideally satisfy four conditions: reliably extract relevant features; be able to identify non-linear feature interactions; scale linearly with the number of features and dimensions; allow the incorporation of known sparsity structure. In this work we propose a novel feature selection algorithm, Gradient Boosted Feature Selection (GBFS), which satisfies all four of these requirements. The algorithm is flexible, scalable, and surprisingly straight-forward to implement as it is based on a modification of Gradient Boosted Trees. We evaluate GBFS on several real world data sets and show that it matches or outperforms other state of the art feature selection algorithms. Yet it scales to larger data set sizes and naturally allows for domain-specific side information.
梯度增强特征选择
特征选择算法理想地满足四个条件:可靠地提取相关特征;能够识别非线性特征相互作用;与特征和维度的数量成线性比例;允许合并已知的稀疏性结构。在这项工作中,我们提出了一种新的特征选择算法,梯度增强特征选择(GBFS),它满足所有这四个要求。该算法是灵活的,可扩展的,并且令人惊讶的直接实现,因为它是基于梯度增强树的修改。我们在几个真实世界的数据集上评估了GBFS,并表明它匹配或优于其他最先进的特征选择算法。然而,它可以扩展到更大的数据集大小,并且自然地允许特定于领域的侧信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信