Bracket width of simple Lie algebras

IF 0.9 3区 数学 Q2 MATHEMATICS
A. Dubouloz, B. Kunyavskii, A. Regeta
{"title":"Bracket width of simple Lie algebras","authors":"A. Dubouloz, B. Kunyavskii, A. Regeta","doi":"10.4171/dm/850","DOIUrl":null,"url":null,"abstract":"The notion of commutator width of a group, defined as the smallest number of commutators needed to represent each element of the derived group as their product, has been extensively studied over the past decades. In particular, in 1992 Barge and Ghys discovered the first example of a simple group of commutator width greater than one among groups of diffeomorphisms of smooth manifolds. We consider a parallel notion of bracket width of a Lie algebra and present the first examples of simple Lie algebras of bracket width greater than one. They are found among the algebras of polynomial vector fields on smooth affine varieties.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/850","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The notion of commutator width of a group, defined as the smallest number of commutators needed to represent each element of the derived group as their product, has been extensively studied over the past decades. In particular, in 1992 Barge and Ghys discovered the first example of a simple group of commutator width greater than one among groups of diffeomorphisms of smooth manifolds. We consider a parallel notion of bracket width of a Lie algebra and present the first examples of simple Lie algebras of bracket width greater than one. They are found among the algebras of polynomial vector fields on smooth affine varieties.
单李代数的支架宽度
群的换向子宽度的概念,定义为表示派生群的每个元素作为它们的乘积所需的最小换向子数,在过去的几十年里得到了广泛的研究。特别地,1992年Barge和Ghys在光滑流形的微分同态群中发现了换向子宽度大于1的简单群的第一个例子。我们考虑了李代数的括号宽度的平行概念,并给出了括号宽度大于1的简单李代数的第一个例子。它们是在光滑仿射变异上多项式向量场的代数中发现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信