Social recommendation incorporating topic mining and social trust analysis

T. Zhao, Chunping Li, Mengya Li, Qiang Ding, Li Li
{"title":"Social recommendation incorporating topic mining and social trust analysis","authors":"T. Zhao, Chunping Li, Mengya Li, Qiang Ding, Li Li","doi":"10.1145/2505515.2505592","DOIUrl":null,"url":null,"abstract":"We study the problem of social recommendation incorporating topic mining and social trust analysis. Different from other works related to social recommendation, we merge topic mining and social trust analysis techniques into recommender systems for finding topics from the tags of the items and estimating the topic-specific social trust. We propose a probabilistic matrix factorization (TTMF) algorithm and try to enhance the recommendation accuracy by utilizing the estimated topic-specific social trust relations. Moreover, TTMF is also convenient to solve the item cold start problem by inferring the feature (topic) of new items from their tags. Experiments are conducted on three different data sets. The results validate the effectiveness of our method for improving recommendation performance and its applicability to solve the cold start problem.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We study the problem of social recommendation incorporating topic mining and social trust analysis. Different from other works related to social recommendation, we merge topic mining and social trust analysis techniques into recommender systems for finding topics from the tags of the items and estimating the topic-specific social trust. We propose a probabilistic matrix factorization (TTMF) algorithm and try to enhance the recommendation accuracy by utilizing the estimated topic-specific social trust relations. Moreover, TTMF is also convenient to solve the item cold start problem by inferring the feature (topic) of new items from their tags. Experiments are conducted on three different data sets. The results validate the effectiveness of our method for improving recommendation performance and its applicability to solve the cold start problem.
结合主题挖掘和社会信任分析的社会推荐
我们结合主题挖掘和社会信任分析来研究社会推荐问题。与其他与社会推荐相关的工作不同,我们将主题挖掘和社会信任分析技术融合到推荐系统中,从项目的标签中寻找主题并估计特定主题的社会信任。我们提出了一种概率矩阵分解(TTMF)算法,并试图利用估计的特定主题的社会信任关系来提高推荐的准确性。此外,TTMF还可以从新项目的标签中推断新项目的特征(主题),从而方便地解决项目冷启动问题。实验在三个不同的数据集上进行。结果验证了该方法在提高推荐性能方面的有效性,以及该方法在解决冷启动问题方面的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信