Time-varying parameter estimation and adaptive Kalman filter in computer aided control application

Levent Özbek
{"title":"Time-varying parameter estimation and adaptive Kalman filter in computer aided control application","authors":"Levent Özbek","doi":"10.14744/sigma.2021.00023","DOIUrl":null,"url":null,"abstract":"Estimating the unknown parameter vector of the system model is the most important problems in system identification. Especially in cases where the system’s parameters are timevariable, it is observed that estimations obtained using estimator have deviated from the actual values, and therefore that the estimator must be corrected to some extent. In this paper, some methods for the parameter estimation in cases where a system is modelled with ARX Autoregressive Exogenous Input) are considered. After reviewing the problems, a simulation study has been made on comparing different estimation methods. Corrected (Adaptive) Kalman Filter (CKF) gives results more accurately than Normal Kalman Filter (NKF) for time varying parameter estimation. Moreover, after an introduction to the method of minimum variance feed-back control, using this method and CKF, a heating control is done in computer aided experimental study. CKF ensures that the system is kept under control by correctly estimating the parameter that changes over time. Cite this article as: Özbek L. Time-varying parameter estimation and adaptive kalman filter in computer aided control application. Sigma J Eng Nat Sci 2021;39(4):00–00. Sigma Journal of Engineering and Natural Sciences Web page info: https://sigma.yildiz.edu.tr DOİ: 10.14744/sigma.2021.00023","PeriodicalId":15669,"journal":{"name":"Journal of Engineering and Natural Sciences – Sigma Mühendislik ve Fen Bilimleri Dergis","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Natural Sciences – Sigma Mühendislik ve Fen Bilimleri Dergis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14744/sigma.2021.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating the unknown parameter vector of the system model is the most important problems in system identification. Especially in cases where the system’s parameters are timevariable, it is observed that estimations obtained using estimator have deviated from the actual values, and therefore that the estimator must be corrected to some extent. In this paper, some methods for the parameter estimation in cases where a system is modelled with ARX Autoregressive Exogenous Input) are considered. After reviewing the problems, a simulation study has been made on comparing different estimation methods. Corrected (Adaptive) Kalman Filter (CKF) gives results more accurately than Normal Kalman Filter (NKF) for time varying parameter estimation. Moreover, after an introduction to the method of minimum variance feed-back control, using this method and CKF, a heating control is done in computer aided experimental study. CKF ensures that the system is kept under control by correctly estimating the parameter that changes over time. Cite this article as: Özbek L. Time-varying parameter estimation and adaptive kalman filter in computer aided control application. Sigma J Eng Nat Sci 2021;39(4):00–00. Sigma Journal of Engineering and Natural Sciences Web page info: https://sigma.yildiz.edu.tr DOİ: 10.14744/sigma.2021.00023
时变参数估计和自适应卡尔曼滤波在计算机辅助控制中的应用
系统模型的未知参数向量估计是系统辨识中最重要的问题。特别是在系统参数时变的情况下,观察到使用估计器得到的估计与实际值有偏差,因此必须对估计器进行一定程度的校正。本文研究了用ARX自回归外生输入建模系统时的参数估计方法。在回顾问题的基础上,对不同的估计方法进行了仿真研究。修正(自适应)卡尔曼滤波(CKF)对时变参数的估计结果比普通卡尔曼滤波(NKF)更精确。此外,在介绍了最小方差反馈控制方法的基础上,利用该方法和CKF进行了加热控制的计算机辅助实验研究。CKF通过正确估计随时间变化的参数来确保系统处于控制之下。时变参数估计和自适应卡尔曼滤波在计算机辅助控制中的应用。中国生物医学工程学报;2011;39(4):00-00。Sigma工程与自然科学杂志网站信息:https://sigma.yildiz.edu.tr DOİ: 10.14744/ Sigma .2021.00023
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信