MISO fractional systems identification with fractional models in the EIV context

Noura Ben Moussa, M. Chetoui, M. Amairi
{"title":"MISO fractional systems identification with fractional models in the EIV context","authors":"Noura Ben Moussa, M. Chetoui, M. Amairi","doi":"10.1109/SSD52085.2021.9429412","DOIUrl":null,"url":null,"abstract":"This paper proposes a new multi-input-single-output (MISO) system identification methods with fractional models in the errors-in-variables context. The developed methods are based on the instrumental variables and use the Higher-Order Statistics (HOS), such as the third-order cumulants, to obtain an unbiased estimate. Two different cases are established : the first supposes that the fractional orders of the single input-single-output (SISO) systems decomposing the MISO system are known a priori and only their linear coefficients are estimated. In the second case, the fractional orders are optimized along with linear coefficients. A Monte Carlo simulations are used, in a numerical example, to analyze the consistency of the developed estimators.","PeriodicalId":6799,"journal":{"name":"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"41 1","pages":"942-947"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD52085.2021.9429412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a new multi-input-single-output (MISO) system identification methods with fractional models in the errors-in-variables context. The developed methods are based on the instrumental variables and use the Higher-Order Statistics (HOS), such as the third-order cumulants, to obtain an unbiased estimate. Two different cases are established : the first supposes that the fractional orders of the single input-single-output (SISO) systems decomposing the MISO system are known a priori and only their linear coefficients are estimated. In the second case, the fractional orders are optimized along with linear coefficients. A Monte Carlo simulations are used, in a numerical example, to analyze the consistency of the developed estimators.
在EIV环境中使用分数模型的MISO分数系统识别
提出了一种基于分数阶模型的多输入单输出系统辨识方法。所开发的方法是基于工具变量,并使用高阶统计量(HOS),如三阶累积量,以获得无偏估计。建立了两种不同的情况:第一种情况假设分解MISO系统的单输入-单输出(SISO)系统的分数阶是先验已知的,并且只估计它们的线性系数。在第二种情况下,分数阶与线性系数一起优化。在一个数值例子中,用蒙特卡罗模拟分析了所提出的估计量的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信