{"title":"Deductive Query Processing With an Objective-oriented Semantic Network in a Massively Parallel Environment","authors":"S. Oh, W. Lee","doi":"10.2316/JOURNAL.202.2004.2.202-1266","DOIUrl":null,"url":null,"abstract":"Most research related to parallel query processing has concentrated on how to properly partition and schedule operation-by-operation and tuple-by-tuple query processing jobs to available processors. As a result, because these operations should perform complex query optimization, tremendous overhead can be involved, especially in a massively parallel system with thousands of processors. Furthermore, there exist unnecessary dependencies among operations allocated in different processors, and a large amount of intermediate data must be exchanged among processors. This article proposes an effective deductive query processing method in a massively parallel system. For this, the facts and deductive rules of a deductive database are partitioned into fine-grain semantic elements based on the concepts of an object-oriented model. These semantic elements are used to construct an object-oriented semantic network (OOSN). Because all facts and deductive rules are mapped to the OOSN statically, a query can be evaluated effectively in a distributed manner without any complex query optimization.","PeriodicalId":93135,"journal":{"name":"PDPTA '19 : proceedings of the 2019 International Conference on Parallel & Distributed Processing Techniquess & Applications. International Conference on Parallel and Distributed Processing Techniques and Applications (2019 : Las Vegas,...","volume":"15 1","pages":"1182-1188"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PDPTA '19 : proceedings of the 2019 International Conference on Parallel & Distributed Processing Techniquess & Applications. International Conference on Parallel and Distributed Processing Techniques and Applications (2019 : Las Vegas,...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/JOURNAL.202.2004.2.202-1266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most research related to parallel query processing has concentrated on how to properly partition and schedule operation-by-operation and tuple-by-tuple query processing jobs to available processors. As a result, because these operations should perform complex query optimization, tremendous overhead can be involved, especially in a massively parallel system with thousands of processors. Furthermore, there exist unnecessary dependencies among operations allocated in different processors, and a large amount of intermediate data must be exchanged among processors. This article proposes an effective deductive query processing method in a massively parallel system. For this, the facts and deductive rules of a deductive database are partitioned into fine-grain semantic elements based on the concepts of an object-oriented model. These semantic elements are used to construct an object-oriented semantic network (OOSN). Because all facts and deductive rules are mapped to the OOSN statically, a query can be evaluated effectively in a distributed manner without any complex query optimization.