Jan Mark de Haan, N. Grbic, I. Claesson, S. Nordholm
{"title":"Filter bank design for subband adaptive microphone arrays","authors":"Jan Mark de Haan, N. Grbic, I. Claesson, S. Nordholm","doi":"10.1109/TSA.2002.807353","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for the design of oversampled uniform DFT-filter banks for the special application of subband adaptive beamforming with microphone arrays. Since array applications rely on the fact that different source positions give rise to different signal delays, a beamformer alters the phase information of the signals. This in turn leads to signal degradations when perfect reconstruction filter banks are used for the subband decomposition and reconstruction. The objective of the filter bank design is to minimize the magnitude of all aliasing components individually, such that aliasing distortion is minimized although phase alterations occur in the subbands. The proposed method is evaluated in a car hands-free mobile telephony environment and the results show that the proposed method offers better performance regarding suppression levels of disturbing signals and much less distortion to the source speech.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"3 1","pages":"14-23"},"PeriodicalIF":0.0000,"publicationDate":"2003-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2002.807353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69
Abstract
This paper presents a new method for the design of oversampled uniform DFT-filter banks for the special application of subband adaptive beamforming with microphone arrays. Since array applications rely on the fact that different source positions give rise to different signal delays, a beamformer alters the phase information of the signals. This in turn leads to signal degradations when perfect reconstruction filter banks are used for the subband decomposition and reconstruction. The objective of the filter bank design is to minimize the magnitude of all aliasing components individually, such that aliasing distortion is minimized although phase alterations occur in the subbands. The proposed method is evaluated in a car hands-free mobile telephony environment and the results show that the proposed method offers better performance regarding suppression levels of disturbing signals and much less distortion to the source speech.